Step |
Hyp |
Ref |
Expression |
1 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
2 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
3 |
1 2
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
4 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
5 |
|
sssigagen |
⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ( topGen ‘ ran (,) ) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( topGen ‘ ran (,) ) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
7 |
3 6
|
sstri |
⊢ ran (,) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
8 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
9 |
7 8
|
sseqtrri |
⊢ ran (,) ⊆ 𝔅ℝ |
10 |
|
eqid |
⊢ vol = vol |
11 |
|
dmvlsiga |
⊢ dom vol ∈ ( sigAlgebra ‘ ℝ ) |
12 |
|
elrnsiga |
⊢ ( dom vol ∈ ( sigAlgebra ‘ ℝ ) → dom vol ∈ ∪ ran sigAlgebra ) |
13 |
11 12
|
mp1i |
⊢ ( vol = vol → dom vol ∈ ∪ ran sigAlgebra ) |
14 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
15 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
16 |
14 15
|
mp1i |
⊢ ( vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
17 |
13 16
|
ismbfm |
⊢ ( vol = vol → ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) ↔ ( 𝐹 ∈ ( ∪ 𝔅ℝ ↑m ∪ dom vol ) ∧ ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) ) |
18 |
10 17
|
ax-mp |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) ↔ ( 𝐹 ∈ ( ∪ 𝔅ℝ ↑m ∪ dom vol ) ∧ ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
19 |
18
|
simprbi |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
20 |
|
ssralv |
⊢ ( ran (,) ⊆ 𝔅ℝ → ( ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
21 |
9 19 20
|
mpsyl |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
22 |
18
|
simplbi |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝐹 ∈ ( ∪ 𝔅ℝ ↑m ∪ dom vol ) ) |
23 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
24 |
|
unibrsiga |
⊢ ∪ 𝔅ℝ = ℝ |
25 |
|
unidmvol |
⊢ ∪ dom vol = ℝ |
26 |
24 25
|
oveq12i |
⊢ ( ∪ 𝔅ℝ ↑m ∪ dom vol ) = ( ℝ ↑m ℝ ) |
27 |
23 26
|
eleq2s |
⊢ ( 𝐹 ∈ ( ∪ 𝔅ℝ ↑m ∪ dom vol ) → 𝐹 : ℝ ⟶ ℝ ) |
28 |
|
ismbf |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
29 |
22 27 28
|
3syl |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
30 |
21 29
|
mpbird |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝐹 ∈ MblFn ) |