Metamath Proof Explorer


Theorem elmbfmvol2

Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017)

Ref Expression
Assertion elmbfmvol2 ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → 𝐹 ∈ MblFn )

Proof

Step Hyp Ref Expression
1 retopbas ran (,) ∈ TopBases
2 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
3 1 2 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
4 retop ( topGen ‘ ran (,) ) ∈ Top
5 sssigagen ( ( topGen ‘ ran (,) ) ∈ Top → ( topGen ‘ ran (,) ) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) )
6 4 5 ax-mp ( topGen ‘ ran (,) ) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) )
7 3 6 sstri ran (,) ⊆ ( sigaGen ‘ ( topGen ‘ ran (,) ) )
8 df-brsiga 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) )
9 7 8 sseqtrri ran (,) ⊆ 𝔅
10 eqid vol = vol
11 dmvlsiga dom vol ∈ ( sigAlgebra ‘ ℝ )
12 elrnsiga ( dom vol ∈ ( sigAlgebra ‘ ℝ ) → dom vol ∈ ran sigAlgebra )
13 11 12 mp1i ( vol = vol → dom vol ∈ ran sigAlgebra )
14 brsigarn 𝔅 ∈ ( sigAlgebra ‘ ℝ )
15 elrnsiga ( 𝔅 ∈ ( sigAlgebra ‘ ℝ ) → 𝔅 ran sigAlgebra )
16 14 15 mp1i ( vol = vol → 𝔅 ran sigAlgebra )
17 13 16 ismbfm ( vol = vol → ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) ↔ ( 𝐹 ∈ ( 𝔅m dom vol ) ∧ ∀ 𝑥 ∈ 𝔅 ( 𝐹𝑥 ) ∈ dom vol ) ) )
18 10 17 ax-mp ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) ↔ ( 𝐹 ∈ ( 𝔅m dom vol ) ∧ ∀ 𝑥 ∈ 𝔅 ( 𝐹𝑥 ) ∈ dom vol ) )
19 18 simprbi ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → ∀ 𝑥 ∈ 𝔅 ( 𝐹𝑥 ) ∈ dom vol )
20 ssralv ( ran (,) ⊆ 𝔅 → ( ∀ 𝑥 ∈ 𝔅 ( 𝐹𝑥 ) ∈ dom vol → ∀ 𝑥 ∈ ran (,) ( 𝐹𝑥 ) ∈ dom vol ) )
21 9 19 20 mpsyl ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → ∀ 𝑥 ∈ ran (,) ( 𝐹𝑥 ) ∈ dom vol )
22 18 simplbi ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → 𝐹 ∈ ( 𝔅m dom vol ) )
23 elmapi ( 𝐹 ∈ ( ℝ ↑m ℝ ) → 𝐹 : ℝ ⟶ ℝ )
24 unibrsiga 𝔅 = ℝ
25 unidmvol dom vol = ℝ
26 24 25 oveq12i ( 𝔅m dom vol ) = ( ℝ ↑m ℝ )
27 23 26 eleq2s ( 𝐹 ∈ ( 𝔅m dom vol ) → 𝐹 : ℝ ⟶ ℝ )
28 ismbf ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( 𝐹𝑥 ) ∈ dom vol ) )
29 22 27 28 3syl ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( 𝐹𝑥 ) ∈ dom vol ) )
30 21 29 mpbird ( 𝐹 ∈ ( dom vol MblFnM 𝔅 ) → 𝐹 ∈ MblFn )