Step |
Hyp |
Ref |
Expression |
1 |
|
pwssb |
⊢ ( dom vol ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ dom vol 𝑥 ⊆ ℝ ) |
2 |
|
mblss |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) |
3 |
1 2
|
mprgbir |
⊢ dom vol ⊆ 𝒫 ℝ |
4 |
|
rembl |
⊢ ℝ ∈ dom vol |
5 |
|
cmmbl |
⊢ ( 𝑥 ∈ dom vol → ( ℝ ∖ 𝑥 ) ∈ dom vol ) |
6 |
5
|
rgen |
⊢ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol |
7 |
|
nnenom |
⊢ ℕ ≈ ω |
8 |
7
|
ensymi |
⊢ ω ≈ ℕ |
9 |
|
domentr |
⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝑥 ≼ ω → 𝑥 ≼ ℕ ) |
11 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol ) |
12 |
|
dfss3 |
⊢ ( 𝑥 ⊆ dom vol ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
13 |
11 12
|
sylib |
⊢ ( 𝑥 ∈ 𝒫 dom vol → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
14 |
|
iunmbl2 |
⊢ ( ( 𝑥 ≼ ℕ ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
15 |
10 13 14
|
syl2anr |
⊢ ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
16 |
15
|
ex |
⊢ ( 𝑥 ∈ 𝒫 dom vol → ( 𝑥 ≼ ω → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) ) |
17 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
18 |
17
|
eleq1i |
⊢ ( ∪ 𝑥 ∈ dom vol ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
19 |
16 18
|
syl6ibr |
⊢ ( 𝑥 ∈ 𝒫 dom vol → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol ) ) |
20 |
19
|
rgen |
⊢ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol ) |
21 |
4 6 20
|
3pm3.2i |
⊢ ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol ) ) |
22 |
|
reex |
⊢ ℝ ∈ V |
23 |
22
|
pwex |
⊢ 𝒫 ℝ ∈ V |
24 |
23 3
|
ssexi |
⊢ dom vol ∈ V |
25 |
|
issiga |
⊢ ( dom vol ∈ V → ( dom vol ∈ ( sigAlgebra ‘ ℝ ) ↔ ( dom vol ⊆ 𝒫 ℝ ∧ ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol ) ) ) ) ) |
26 |
24 25
|
ax-mp |
⊢ ( dom vol ∈ ( sigAlgebra ‘ ℝ ) ↔ ( dom vol ⊆ 𝒫 ℝ ∧ ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol ) ) ) ) |
27 |
3 21 26
|
mpbir2an |
⊢ dom vol ∈ ( sigAlgebra ‘ ℝ ) |