Metamath Proof Explorer


Theorem dmvlsiga

Description: Lebesgue-measurable subsets of RR form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016) (Revised by Thierry Arnoux, 24-Oct-2016)

Ref Expression
Assertion dmvlsiga dom vol ∈ ( sigAlgebra ‘ ℝ )

Proof

Step Hyp Ref Expression
1 pwssb ( dom vol ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ dom vol 𝑥 ⊆ ℝ )
2 mblss ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ )
3 1 2 mprgbir dom vol ⊆ 𝒫 ℝ
4 rembl ℝ ∈ dom vol
5 cmmbl ( 𝑥 ∈ dom vol → ( ℝ ∖ 𝑥 ) ∈ dom vol )
6 5 rgen 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol
7 nnenom ℕ ≈ ω
8 7 ensymi ω ≈ ℕ
9 domentr ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ )
10 8 9 mpan2 ( 𝑥 ≼ ω → 𝑥 ≼ ℕ )
11 elpwi ( 𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol )
12 dfss3 ( 𝑥 ⊆ dom vol ↔ ∀ 𝑦𝑥 𝑦 ∈ dom vol )
13 11 12 sylib ( 𝑥 ∈ 𝒫 dom vol → ∀ 𝑦𝑥 𝑦 ∈ dom vol )
14 iunmbl2 ( ( 𝑥 ≼ ℕ ∧ ∀ 𝑦𝑥 𝑦 ∈ dom vol ) → 𝑦𝑥 𝑦 ∈ dom vol )
15 10 13 14 syl2anr ( ( 𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω ) → 𝑦𝑥 𝑦 ∈ dom vol )
16 15 ex ( 𝑥 ∈ 𝒫 dom vol → ( 𝑥 ≼ ω → 𝑦𝑥 𝑦 ∈ dom vol ) )
17 uniiun 𝑥 = 𝑦𝑥 𝑦
18 17 eleq1i ( 𝑥 ∈ dom vol ↔ 𝑦𝑥 𝑦 ∈ dom vol )
19 16 18 syl6ibr ( 𝑥 ∈ 𝒫 dom vol → ( 𝑥 ≼ ω → 𝑥 ∈ dom vol ) )
20 19 rgen 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → 𝑥 ∈ dom vol )
21 4 6 20 3pm3.2i ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → 𝑥 ∈ dom vol ) )
22 reex ℝ ∈ V
23 22 pwex 𝒫 ℝ ∈ V
24 23 3 ssexi dom vol ∈ V
25 issiga ( dom vol ∈ V → ( dom vol ∈ ( sigAlgebra ‘ ℝ ) ↔ ( dom vol ⊆ 𝒫 ℝ ∧ ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → 𝑥 ∈ dom vol ) ) ) ) )
26 24 25 ax-mp ( dom vol ∈ ( sigAlgebra ‘ ℝ ) ↔ ( dom vol ⊆ 𝒫 ℝ ∧ ( ℝ ∈ dom vol ∧ ∀ 𝑥 ∈ dom vol ( ℝ ∖ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ 𝒫 dom vol ( 𝑥 ≼ ω → 𝑥 ∈ dom vol ) ) ) )
27 3 21 26 mpbir2an dom vol ∈ ( sigAlgebra ‘ ℝ )