Metamath Proof Explorer


Theorem mbfmvolf

Description: Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017)

Ref Expression
Assertion mbfmvolf
|- ( F e. ( dom vol MblFnM BrSiga ) -> F : RR --> RR )

Proof

Step Hyp Ref Expression
1 dmvlsiga
 |-  dom vol e. ( sigAlgebra ` RR )
2 issgon
 |-  ( dom vol e. ( sigAlgebra ` RR ) <-> ( dom vol e. U. ran sigAlgebra /\ RR = U. dom vol ) )
3 1 2 mpbi
 |-  ( dom vol e. U. ran sigAlgebra /\ RR = U. dom vol )
4 3 simpli
 |-  dom vol e. U. ran sigAlgebra
5 4 a1i
 |-  ( F e. ( dom vol MblFnM BrSiga ) -> dom vol e. U. ran sigAlgebra )
6 brsigarn
 |-  BrSiga e. ( sigAlgebra ` RR )
7 issgon
 |-  ( BrSiga e. ( sigAlgebra ` RR ) <-> ( BrSiga e. U. ran sigAlgebra /\ RR = U. BrSiga ) )
8 6 7 mpbi
 |-  ( BrSiga e. U. ran sigAlgebra /\ RR = U. BrSiga )
9 8 simpli
 |-  BrSiga e. U. ran sigAlgebra
10 9 a1i
 |-  ( F e. ( dom vol MblFnM BrSiga ) -> BrSiga e. U. ran sigAlgebra )
11 id
 |-  ( F e. ( dom vol MblFnM BrSiga ) -> F e. ( dom vol MblFnM BrSiga ) )
12 5 10 11 mbfmf
 |-  ( F e. ( dom vol MblFnM BrSiga ) -> F : U. dom vol --> U. BrSiga )
13 3 simpri
 |-  RR = U. dom vol
14 8 simpri
 |-  RR = U. BrSiga
15 13 14 feq23i
 |-  ( F : RR --> RR <-> F : U. dom vol --> U. BrSiga )
16 12 15 sylibr
 |-  ( F e. ( dom vol MblFnM BrSiga ) -> F : RR --> RR )