| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmvlsiga |
⊢ dom vol ∈ ( sigAlgebra ‘ ℝ ) |
| 2 |
|
issgon |
⊢ ( dom vol ∈ ( sigAlgebra ‘ ℝ ) ↔ ( dom vol ∈ ∪ ran sigAlgebra ∧ ℝ = ∪ dom vol ) ) |
| 3 |
1 2
|
mpbi |
⊢ ( dom vol ∈ ∪ ran sigAlgebra ∧ ℝ = ∪ dom vol ) |
| 4 |
3
|
simpli |
⊢ dom vol ∈ ∪ ran sigAlgebra |
| 5 |
4
|
a1i |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → dom vol ∈ ∪ ran sigAlgebra ) |
| 6 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
| 7 |
|
issgon |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) ↔ ( 𝔅ℝ ∈ ∪ ran sigAlgebra ∧ ℝ = ∪ 𝔅ℝ ) ) |
| 8 |
6 7
|
mpbi |
⊢ ( 𝔅ℝ ∈ ∪ ran sigAlgebra ∧ ℝ = ∪ 𝔅ℝ ) |
| 9 |
8
|
simpli |
⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
| 10 |
9
|
a1i |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
| 11 |
|
id |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) ) |
| 12 |
5 10 11
|
mbfmf |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝐹 : ∪ dom vol ⟶ ∪ 𝔅ℝ ) |
| 13 |
3
|
simpri |
⊢ ℝ = ∪ dom vol |
| 14 |
8
|
simpri |
⊢ ℝ = ∪ 𝔅ℝ |
| 15 |
13 14
|
feq23i |
⊢ ( 𝐹 : ℝ ⟶ ℝ ↔ 𝐹 : ∪ dom vol ⟶ ∪ 𝔅ℝ ) |
| 16 |
12 15
|
sylibr |
⊢ ( 𝐹 ∈ ( dom vol MblFnM 𝔅ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |