Metamath Proof Explorer


Theorem 2ndmbfm

Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 ( 𝜑𝑆 ran sigAlgebra )
1stmbfm.2 ( 𝜑𝑇 ran sigAlgebra )
Assertion 2ndmbfm ( 𝜑 → ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑇 ) )

Proof

Step Hyp Ref Expression
1 1stmbfm.1 ( 𝜑𝑆 ran sigAlgebra )
2 1stmbfm.2 ( 𝜑𝑇 ran sigAlgebra )
3 f2ndres ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑇
4 sxuni ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
6 5 feq2d ( 𝜑 → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑇 ↔ ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑇 ) )
7 3 6 mpbii ( 𝜑 → ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑇 )
8 unielsiga ( 𝑇 ran sigAlgebra → 𝑇𝑇 )
9 2 8 syl ( 𝜑 𝑇𝑇 )
10 sxsiga ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra )
11 1 2 10 syl2anc ( 𝜑 → ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra )
12 unielsiga ( ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra → ( 𝑆 ×s 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
13 11 12 syl ( 𝜑 ( 𝑆 ×s 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
14 9 13 elmapd ( 𝜑 → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑇m ( 𝑆 ×s 𝑇 ) ) ↔ ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑇 ) )
15 7 14 mpbird ( 𝜑 → ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑇m ( 𝑆 ×s 𝑇 ) ) )
16 ffn ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑇 → ( 2nd ↾ ( 𝑆 × 𝑇 ) ) Fn ( 𝑆 × 𝑇 ) )
17 elpreima ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) Fn ( 𝑆 × 𝑇 ) → ( 𝑧 ∈ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) ) )
18 3 16 17 mp2b ( 𝑧 ∈ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) )
19 fvres ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) = ( 2nd𝑧 ) )
20 19 eleq1d ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ↔ ( 2nd𝑧 ) ∈ 𝑎 ) )
21 1st2nd2 ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
22 xp1st ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( 1st𝑧 ) ∈ 𝑆 )
23 elxp6 ( 𝑧 ∈ ( 𝑆 × 𝑎 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑆 ∧ ( 2nd𝑧 ) ∈ 𝑎 ) ) )
24 anass ( ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑆 ) ∧ ( 2nd𝑧 ) ∈ 𝑎 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑆 ∧ ( 2nd𝑧 ) ∈ 𝑎 ) ) )
25 23 24 bitr4i ( 𝑧 ∈ ( 𝑆 × 𝑎 ) ↔ ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑆 ) ∧ ( 2nd𝑧 ) ∈ 𝑎 ) )
26 25 baib ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑆 × 𝑎 ) ↔ ( 2nd𝑧 ) ∈ 𝑎 ) )
27 21 22 26 syl2anc ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( 𝑧 ∈ ( 𝑆 × 𝑎 ) ↔ ( 2nd𝑧 ) ∈ 𝑎 ) )
28 20 27 bitr4d ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎𝑧 ∈ ( 𝑆 × 𝑎 ) ) )
29 28 pm5.32i ( ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑆 × 𝑎 ) ) )
30 18 29 bitri ( 𝑧 ∈ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑆 × 𝑎 ) ) )
31 sgon ( 𝑇 ran sigAlgebra → 𝑇 ∈ ( sigAlgebra ‘ 𝑇 ) )
32 sigasspw ( 𝑇 ∈ ( sigAlgebra ‘ 𝑇 ) → 𝑇 ⊆ 𝒫 𝑇 )
33 pwssb ( 𝑇 ⊆ 𝒫 𝑇 ↔ ∀ 𝑎𝑇 𝑎 𝑇 )
34 33 biimpi ( 𝑇 ⊆ 𝒫 𝑇 → ∀ 𝑎𝑇 𝑎 𝑇 )
35 2 31 32 34 4syl ( 𝜑 → ∀ 𝑎𝑇 𝑎 𝑇 )
36 35 r19.21bi ( ( 𝜑𝑎𝑇 ) → 𝑎 𝑇 )
37 xpss2 ( 𝑎 𝑇 → ( 𝑆 × 𝑎 ) ⊆ ( 𝑆 × 𝑇 ) )
38 36 37 syl ( ( 𝜑𝑎𝑇 ) → ( 𝑆 × 𝑎 ) ⊆ ( 𝑆 × 𝑇 ) )
39 38 sseld ( ( 𝜑𝑎𝑇 ) → ( 𝑧 ∈ ( 𝑆 × 𝑎 ) → 𝑧 ∈ ( 𝑆 × 𝑇 ) ) )
40 39 pm4.71rd ( ( 𝜑𝑎𝑇 ) → ( 𝑧 ∈ ( 𝑆 × 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑆 × 𝑎 ) ) ) )
41 30 40 bitr4id ( ( 𝜑𝑎𝑇 ) → ( 𝑧 ∈ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ 𝑧 ∈ ( 𝑆 × 𝑎 ) ) )
42 41 eqrdv ( ( 𝜑𝑎𝑇 ) → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) = ( 𝑆 × 𝑎 ) )
43 1 adantr ( ( 𝜑𝑎𝑇 ) → 𝑆 ran sigAlgebra )
44 2 adantr ( ( 𝜑𝑎𝑇 ) → 𝑇 ran sigAlgebra )
45 eqid 𝑆 = 𝑆
46 issgon ( 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) ↔ ( 𝑆 ran sigAlgebra ∧ 𝑆 = 𝑆 ) )
47 1 45 46 sylanblrc ( 𝜑𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) )
48 baselsiga ( 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) → 𝑆𝑆 )
49 47 48 syl ( 𝜑 𝑆𝑆 )
50 49 adantr ( ( 𝜑𝑎𝑇 ) → 𝑆𝑆 )
51 simpr ( ( 𝜑𝑎𝑇 ) → 𝑎𝑇 )
52 elsx ( ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) ∧ ( 𝑆𝑆𝑎𝑇 ) ) → ( 𝑆 × 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
53 43 44 50 51 52 syl22anc ( ( 𝜑𝑎𝑇 ) → ( 𝑆 × 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
54 42 53 eqeltrd ( ( 𝜑𝑎𝑇 ) → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
55 54 ralrimiva ( 𝜑 → ∀ 𝑎𝑇 ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
56 11 2 ismbfm ( 𝜑 → ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑇 ) ↔ ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑇m ( 𝑆 ×s 𝑇 ) ) ∧ ∀ 𝑎𝑇 ( ( 2nd ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) ) ) )
57 15 55 56 mpbir2and ( 𝜑 → ( 2nd ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑇 ) )