| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) |
| 2 |
1
|
txbasex |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ) |
| 3 |
|
sssigagen |
⊢ ( ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ∈ V → ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 6 |
|
eqid |
⊢ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) |
| 7 |
|
xpeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ↔ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝑦 ) ) ) |
| 9 |
|
xpeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝑦 ) ↔ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) ) |
| 11 |
8 10
|
rspc2ev |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ∧ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) → ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) |
| 12 |
6 11
|
mp3an3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) |
| 13 |
|
xpexg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) |
| 15 |
14
|
elrnmpog |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) ) |
| 16 |
13 15
|
syl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) ) |
| 17 |
12 16
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 19 |
5 18
|
sseldd |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 20 |
1
|
sxval |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 22 |
19 21
|
eleqtrrd |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ( 𝑆 ×s 𝑇 ) ) |