Metamath Proof Explorer


Theorem elsx

Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Assertion elsx ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ( 𝑆 ×s 𝑇 ) )

Proof

Step Hyp Ref Expression
1 eqid ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) )
2 1 txbasex ( ( 𝑆𝑉𝑇𝑊 ) → ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ∈ V )
3 sssigagen ( ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ∈ V → ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
4 2 3 syl ( ( 𝑆𝑉𝑇𝑊 ) → ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
5 4 adantr ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
6 eqid ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 )
7 xpeq1 ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) )
8 7 eqeq2d ( 𝑥 = 𝐴 → ( ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ↔ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝑦 ) ) )
9 xpeq2 ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) )
10 9 eqeq2d ( 𝑦 = 𝐵 → ( ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝑦 ) ↔ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) )
11 8 10 rspc2ev ( ( 𝐴𝑆𝐵𝑇 ∧ ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) → ∃ 𝑥𝑆𝑦𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) )
12 6 11 mp3an3 ( ( 𝐴𝑆𝐵𝑇 ) → ∃ 𝑥𝑆𝑦𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) )
13 xpexg ( ( 𝐴𝑆𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ∈ V )
14 eqid ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) )
15 14 elrnmpog ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥𝑆𝑦𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) )
16 13 15 syl ( ( 𝐴𝑆𝐵𝑇 ) → ( ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥𝑆𝑦𝑇 ( 𝐴 × 𝐵 ) = ( 𝑥 × 𝑦 ) ) )
17 12 16 mpbird ( ( 𝐴𝑆𝐵𝑇 ) → ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) )
18 17 adantl ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) )
19 5 18 sseldd ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
20 1 sxval ( ( 𝑆𝑉𝑇𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
21 20 adantr ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
22 19 21 eleqtrrd ( ( ( 𝑆𝑉𝑇𝑊 ) ∧ ( 𝐴𝑆𝐵𝑇 ) ) → ( 𝐴 × 𝐵 ) ∈ ( 𝑆 ×s 𝑇 ) )