Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|- B = ( Base ` W ) |
2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
9 |
|
sibf0.1 |
|- ( ph -> W e. TopSp ) |
10 |
|
sibf0.2 |
|- ( ph -> W e. Mnd ) |
11 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
12 |
8 11
|
syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
13 |
2
|
fvexi |
|- J e. _V |
14 |
13
|
a1i |
|- ( ph -> J e. _V ) |
15 |
14
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
16 |
3 15
|
eqeltrid |
|- ( ph -> S e. U. ran sigAlgebra ) |
17 |
|
fconstmpt |
|- ( U. dom M X. { .0. } ) = ( x e. U. dom M |-> .0. ) |
18 |
17
|
a1i |
|- ( ph -> ( U. dom M X. { .0. } ) = ( x e. U. dom M |-> .0. ) ) |
19 |
1 4
|
mndidcl |
|- ( W e. Mnd -> .0. e. B ) |
20 |
10 19
|
syl |
|- ( ph -> .0. e. B ) |
21 |
1 2
|
tpsuni |
|- ( W e. TopSp -> B = U. J ) |
22 |
9 21
|
syl |
|- ( ph -> B = U. J ) |
23 |
3
|
unieqi |
|- U. S = U. ( sigaGen ` J ) |
24 |
|
unisg |
|- ( J e. _V -> U. ( sigaGen ` J ) = U. J ) |
25 |
13 24
|
mp1i |
|- ( ph -> U. ( sigaGen ` J ) = U. J ) |
26 |
23 25
|
eqtrid |
|- ( ph -> U. S = U. J ) |
27 |
22 26
|
eqtr4d |
|- ( ph -> B = U. S ) |
28 |
20 27
|
eleqtrd |
|- ( ph -> .0. e. U. S ) |
29 |
12 16 18 28
|
mbfmcst |
|- ( ph -> ( U. dom M X. { .0. } ) e. ( dom M MblFnM S ) ) |
30 |
|
xpeq1 |
|- ( U. dom M = (/) -> ( U. dom M X. { .0. } ) = ( (/) X. { .0. } ) ) |
31 |
|
0xp |
|- ( (/) X. { .0. } ) = (/) |
32 |
30 31
|
eqtrdi |
|- ( U. dom M = (/) -> ( U. dom M X. { .0. } ) = (/) ) |
33 |
32
|
rneqd |
|- ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) = ran (/) ) |
34 |
|
rn0 |
|- ran (/) = (/) |
35 |
33 34
|
eqtrdi |
|- ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) = (/) ) |
36 |
|
0fin |
|- (/) e. Fin |
37 |
35 36
|
eqeltrdi |
|- ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) e. Fin ) |
38 |
|
rnxp |
|- ( U. dom M =/= (/) -> ran ( U. dom M X. { .0. } ) = { .0. } ) |
39 |
|
snfi |
|- { .0. } e. Fin |
40 |
38 39
|
eqeltrdi |
|- ( U. dom M =/= (/) -> ran ( U. dom M X. { .0. } ) e. Fin ) |
41 |
37 40
|
pm2.61ine |
|- ran ( U. dom M X. { .0. } ) e. Fin |
42 |
41
|
a1i |
|- ( ph -> ran ( U. dom M X. { .0. } ) e. Fin ) |
43 |
|
noel |
|- -. x e. (/) |
44 |
35
|
difeq1d |
|- ( U. dom M = (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = ( (/) \ { .0. } ) ) |
45 |
|
0dif |
|- ( (/) \ { .0. } ) = (/) |
46 |
44 45
|
eqtrdi |
|- ( U. dom M = (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) |
47 |
38
|
difeq1d |
|- ( U. dom M =/= (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = ( { .0. } \ { .0. } ) ) |
48 |
|
difid |
|- ( { .0. } \ { .0. } ) = (/) |
49 |
47 48
|
eqtrdi |
|- ( U. dom M =/= (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) |
50 |
46 49
|
pm2.61ine |
|- ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) |
51 |
50
|
eleq2i |
|- ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) <-> x e. (/) ) |
52 |
43 51
|
mtbir |
|- -. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |
53 |
52
|
pm2.21i |
|- ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) -> ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) |
54 |
53
|
adantl |
|- ( ( ph /\ x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ) -> ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) |
55 |
54
|
ralrimiva |
|- ( ph -> A. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) |
56 |
1 2 3 4 5 6 7 8
|
issibf |
|- ( ph -> ( ( U. dom M X. { .0. } ) e. dom ( W sitg M ) <-> ( ( U. dom M X. { .0. } ) e. ( dom M MblFnM S ) /\ ran ( U. dom M X. { .0. } ) e. Fin /\ A. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
57 |
29 42 55 56
|
mpbir3and |
|- ( ph -> ( U. dom M X. { .0. } ) e. dom ( W sitg M ) ) |