| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sibf0.1 |  |-  ( ph -> W e. TopSp ) | 
						
							| 10 |  | sibf0.2 |  |-  ( ph -> W e. Mnd ) | 
						
							| 11 |  | dmmeas |  |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) | 
						
							| 12 | 8 11 | syl |  |-  ( ph -> dom M e. U. ran sigAlgebra ) | 
						
							| 13 | 2 | fvexi |  |-  J e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ph -> J e. _V ) | 
						
							| 15 | 14 | sgsiga |  |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) | 
						
							| 16 | 3 15 | eqeltrid |  |-  ( ph -> S e. U. ran sigAlgebra ) | 
						
							| 17 |  | fconstmpt |  |-  ( U. dom M X. { .0. } ) = ( x e. U. dom M |-> .0. ) | 
						
							| 18 | 17 | a1i |  |-  ( ph -> ( U. dom M X. { .0. } ) = ( x e. U. dom M |-> .0. ) ) | 
						
							| 19 | 1 4 | mndidcl |  |-  ( W e. Mnd -> .0. e. B ) | 
						
							| 20 | 10 19 | syl |  |-  ( ph -> .0. e. B ) | 
						
							| 21 | 1 2 | tpsuni |  |-  ( W e. TopSp -> B = U. J ) | 
						
							| 22 | 9 21 | syl |  |-  ( ph -> B = U. J ) | 
						
							| 23 | 3 | unieqi |  |-  U. S = U. ( sigaGen ` J ) | 
						
							| 24 |  | unisg |  |-  ( J e. _V -> U. ( sigaGen ` J ) = U. J ) | 
						
							| 25 | 13 24 | mp1i |  |-  ( ph -> U. ( sigaGen ` J ) = U. J ) | 
						
							| 26 | 23 25 | eqtrid |  |-  ( ph -> U. S = U. J ) | 
						
							| 27 | 22 26 | eqtr4d |  |-  ( ph -> B = U. S ) | 
						
							| 28 | 20 27 | eleqtrd |  |-  ( ph -> .0. e. U. S ) | 
						
							| 29 | 12 16 18 28 | mbfmcst |  |-  ( ph -> ( U. dom M X. { .0. } ) e. ( dom M MblFnM S ) ) | 
						
							| 30 |  | xpeq1 |  |-  ( U. dom M = (/) -> ( U. dom M X. { .0. } ) = ( (/) X. { .0. } ) ) | 
						
							| 31 |  | 0xp |  |-  ( (/) X. { .0. } ) = (/) | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( U. dom M = (/) -> ( U. dom M X. { .0. } ) = (/) ) | 
						
							| 33 | 32 | rneqd |  |-  ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) = ran (/) ) | 
						
							| 34 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) = (/) ) | 
						
							| 36 |  | 0fi |  |-  (/) e. Fin | 
						
							| 37 | 35 36 | eqeltrdi |  |-  ( U. dom M = (/) -> ran ( U. dom M X. { .0. } ) e. Fin ) | 
						
							| 38 |  | rnxp |  |-  ( U. dom M =/= (/) -> ran ( U. dom M X. { .0. } ) = { .0. } ) | 
						
							| 39 |  | snfi |  |-  { .0. } e. Fin | 
						
							| 40 | 38 39 | eqeltrdi |  |-  ( U. dom M =/= (/) -> ran ( U. dom M X. { .0. } ) e. Fin ) | 
						
							| 41 | 37 40 | pm2.61ine |  |-  ran ( U. dom M X. { .0. } ) e. Fin | 
						
							| 42 | 41 | a1i |  |-  ( ph -> ran ( U. dom M X. { .0. } ) e. Fin ) | 
						
							| 43 |  | noel |  |-  -. x e. (/) | 
						
							| 44 | 35 | difeq1d |  |-  ( U. dom M = (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = ( (/) \ { .0. } ) ) | 
						
							| 45 |  | 0dif |  |-  ( (/) \ { .0. } ) = (/) | 
						
							| 46 | 44 45 | eqtrdi |  |-  ( U. dom M = (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) | 
						
							| 47 | 38 | difeq1d |  |-  ( U. dom M =/= (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = ( { .0. } \ { .0. } ) ) | 
						
							| 48 |  | difid |  |-  ( { .0. } \ { .0. } ) = (/) | 
						
							| 49 | 47 48 | eqtrdi |  |-  ( U. dom M =/= (/) -> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) | 
						
							| 50 | 46 49 | pm2.61ine |  |-  ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) | 
						
							| 51 | 50 | eleq2i |  |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) <-> x e. (/) ) | 
						
							| 52 | 43 51 | mtbir |  |-  -. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) | 
						
							| 53 | 52 | pm2.21i |  |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) -> ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ) -> ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ph -> A. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 | issibf |  |-  ( ph -> ( ( U. dom M X. { .0. } ) e. dom ( W sitg M ) <-> ( ( U. dom M X. { .0. } ) e. ( dom M MblFnM S ) /\ ran ( U. dom M X. { .0. } ) e. Fin /\ A. x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 57 | 29 42 55 56 | mpbir3and |  |-  ( ph -> ( U. dom M X. { .0. } ) e. dom ( W sitg M ) ) |