Step |
Hyp |
Ref |
Expression |
0 |
|
csmu |
⊢ smul |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
2
|
cpw |
⊢ 𝒫 ℕ0 |
4 |
|
vy |
⊢ 𝑦 |
5 |
|
vk |
⊢ 𝑘 |
6 |
5
|
cv |
⊢ 𝑘 |
7 |
|
cc0 |
⊢ 0 |
8 |
|
vp |
⊢ 𝑝 |
9 |
|
vm |
⊢ 𝑚 |
10 |
8
|
cv |
⊢ 𝑝 |
11 |
|
csad |
⊢ sadd |
12 |
|
vn |
⊢ 𝑛 |
13 |
9
|
cv |
⊢ 𝑚 |
14 |
1
|
cv |
⊢ 𝑥 |
15 |
13 14
|
wcel |
⊢ 𝑚 ∈ 𝑥 |
16 |
12
|
cv |
⊢ 𝑛 |
17 |
|
cmin |
⊢ − |
18 |
16 13 17
|
co |
⊢ ( 𝑛 − 𝑚 ) |
19 |
4
|
cv |
⊢ 𝑦 |
20 |
18 19
|
wcel |
⊢ ( 𝑛 − 𝑚 ) ∈ 𝑦 |
21 |
15 20
|
wa |
⊢ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) |
22 |
21 12 2
|
crab |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } |
23 |
10 22 11
|
co |
⊢ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) |
24 |
8 9 3 2 23
|
cmpo |
⊢ ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) |
25 |
16 7
|
wceq |
⊢ 𝑛 = 0 |
26 |
|
c0 |
⊢ ∅ |
27 |
|
c1 |
⊢ 1 |
28 |
16 27 17
|
co |
⊢ ( 𝑛 − 1 ) |
29 |
25 26 28
|
cif |
⊢ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) |
30 |
12 2 29
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) |
31 |
24 30 7
|
cseq |
⊢ seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
32 |
|
caddc |
⊢ + |
33 |
6 27 32
|
co |
⊢ ( 𝑘 + 1 ) |
34 |
33 31
|
cfv |
⊢ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) |
35 |
6 34
|
wcel |
⊢ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) |
36 |
35 5 2
|
crab |
⊢ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) } |
37 |
1 4 3 3 36
|
cmpo |
⊢ ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ 𝒫 ℕ0 ↦ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) } ) |
38 |
0 37
|
wceq |
⊢ smul = ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ 𝒫 ℕ0 ↦ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) } ) |