| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csmu |  |-  smul | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 | 2 | cpw |  |-  ~P NN0 | 
						
							| 4 |  | vy |  |-  y | 
						
							| 5 |  | vk |  |-  k | 
						
							| 6 | 5 | cv |  |-  k | 
						
							| 7 |  | cc0 |  |-  0 | 
						
							| 8 |  | vp |  |-  p | 
						
							| 9 |  | vm |  |-  m | 
						
							| 10 | 8 | cv |  |-  p | 
						
							| 11 |  | csad |  |-  sadd | 
						
							| 12 |  | vn |  |-  n | 
						
							| 13 | 9 | cv |  |-  m | 
						
							| 14 | 1 | cv |  |-  x | 
						
							| 15 | 13 14 | wcel |  |-  m e. x | 
						
							| 16 | 12 | cv |  |-  n | 
						
							| 17 |  | cmin |  |-  - | 
						
							| 18 | 16 13 17 | co |  |-  ( n - m ) | 
						
							| 19 | 4 | cv |  |-  y | 
						
							| 20 | 18 19 | wcel |  |-  ( n - m ) e. y | 
						
							| 21 | 15 20 | wa |  |-  ( m e. x /\ ( n - m ) e. y ) | 
						
							| 22 | 21 12 2 | crab |  |-  { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } | 
						
							| 23 | 10 22 11 | co |  |-  ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) | 
						
							| 24 | 8 9 3 2 23 | cmpo |  |-  ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) | 
						
							| 25 | 16 7 | wceq |  |-  n = 0 | 
						
							| 26 |  | c0 |  |-  (/) | 
						
							| 27 |  | c1 |  |-  1 | 
						
							| 28 | 16 27 17 | co |  |-  ( n - 1 ) | 
						
							| 29 | 25 26 28 | cif |  |-  if ( n = 0 , (/) , ( n - 1 ) ) | 
						
							| 30 | 12 2 29 | cmpt |  |-  ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) | 
						
							| 31 | 24 30 7 | cseq |  |-  seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 32 |  | caddc |  |-  + | 
						
							| 33 | 6 27 32 | co |  |-  ( k + 1 ) | 
						
							| 34 | 33 31 | cfv |  |-  ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) | 
						
							| 35 | 6 34 | wcel |  |-  k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) | 
						
							| 36 | 35 5 2 | crab |  |-  { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } | 
						
							| 37 | 1 4 3 3 36 | cmpo |  |-  ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) | 
						
							| 38 | 0 37 | wceq |  |-  smul = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |