Step |
Hyp |
Ref |
Expression |
0 |
|
csmu |
|- smul |
1 |
|
vx |
|- x |
2 |
|
cn0 |
|- NN0 |
3 |
2
|
cpw |
|- ~P NN0 |
4 |
|
vy |
|- y |
5 |
|
vk |
|- k |
6 |
5
|
cv |
|- k |
7 |
|
cc0 |
|- 0 |
8 |
|
vp |
|- p |
9 |
|
vm |
|- m |
10 |
8
|
cv |
|- p |
11 |
|
csad |
|- sadd |
12 |
|
vn |
|- n |
13 |
9
|
cv |
|- m |
14 |
1
|
cv |
|- x |
15 |
13 14
|
wcel |
|- m e. x |
16 |
12
|
cv |
|- n |
17 |
|
cmin |
|- - |
18 |
16 13 17
|
co |
|- ( n - m ) |
19 |
4
|
cv |
|- y |
20 |
18 19
|
wcel |
|- ( n - m ) e. y |
21 |
15 20
|
wa |
|- ( m e. x /\ ( n - m ) e. y ) |
22 |
21 12 2
|
crab |
|- { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } |
23 |
10 22 11
|
co |
|- ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) |
24 |
8 9 3 2 23
|
cmpo |
|- ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) |
25 |
16 7
|
wceq |
|- n = 0 |
26 |
|
c0 |
|- (/) |
27 |
|
c1 |
|- 1 |
28 |
16 27 17
|
co |
|- ( n - 1 ) |
29 |
25 26 28
|
cif |
|- if ( n = 0 , (/) , ( n - 1 ) ) |
30 |
12 2 29
|
cmpt |
|- ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) |
31 |
24 30 7
|
cseq |
|- seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
32 |
|
caddc |
|- + |
33 |
6 27 32
|
co |
|- ( k + 1 ) |
34 |
33 31
|
cfv |
|- ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) |
35 |
6 34
|
wcel |
|- k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) |
36 |
35 5 2
|
crab |
|- { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } |
37 |
1 4 3 3 36
|
cmpo |
|- ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |
38 |
0 37
|
wceq |
|- smul = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |