| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | smuval.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | smuval.p |  |-  P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 4 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 5 | 4 | elpw2 |  |-  ( A e. ~P NN0 <-> A C_ NN0 ) | 
						
							| 6 | 1 5 | sylibr |  |-  ( ph -> A e. ~P NN0 ) | 
						
							| 7 | 4 | elpw2 |  |-  ( B e. ~P NN0 <-> B C_ NN0 ) | 
						
							| 8 | 2 7 | sylibr |  |-  ( ph -> B e. ~P NN0 ) | 
						
							| 9 |  | simp1l |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> x = A ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( m e. x <-> m e. A ) ) | 
						
							| 11 |  | simp1r |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> y = B ) | 
						
							| 12 | 11 | eleq2d |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( ( n - m ) e. y <-> ( n - m ) e. B ) ) | 
						
							| 13 | 10 12 | anbi12d |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( ( m e. x /\ ( n - m ) e. y ) <-> ( m e. A /\ ( n - m ) e. B ) ) ) | 
						
							| 14 | 13 | rabbidv |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } = { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) = ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) | 
						
							| 16 | 15 | mpoeq3dva |  |-  ( ( x = A /\ y = B ) -> ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) = ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) ) | 
						
							| 17 | 16 | seqeq2d |  |-  ( ( x = A /\ y = B ) -> seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ) | 
						
							| 18 | 17 3 | eqtr4di |  |-  ( ( x = A /\ y = B ) -> seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = P ) | 
						
							| 19 | 18 | fveq1d |  |-  ( ( x = A /\ y = B ) -> ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ( x = A /\ y = B ) -> ( k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) <-> k e. ( P ` ( k + 1 ) ) ) ) | 
						
							| 21 | 20 | rabbidv |  |-  ( ( x = A /\ y = B ) -> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) | 
						
							| 22 |  | df-smu |  |-  smul = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) | 
						
							| 23 | 4 | rabex |  |-  { k e. NN0 | k e. ( P ` ( k + 1 ) ) } e. _V | 
						
							| 24 | 21 22 23 | ovmpoa |  |-  ( ( A e. ~P NN0 /\ B e. ~P NN0 ) -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) | 
						
							| 25 | 6 8 24 | syl2anc |  |-  ( ph -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) |