Step |
Hyp |
Ref |
Expression |
1 |
|
smuval.a |
|- ( ph -> A C_ NN0 ) |
2 |
|
smuval.b |
|- ( ph -> B C_ NN0 ) |
3 |
|
smuval.p |
|- P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
4 |
|
nn0ex |
|- NN0 e. _V |
5 |
4
|
elpw2 |
|- ( A e. ~P NN0 <-> A C_ NN0 ) |
6 |
1 5
|
sylibr |
|- ( ph -> A e. ~P NN0 ) |
7 |
4
|
elpw2 |
|- ( B e. ~P NN0 <-> B C_ NN0 ) |
8 |
2 7
|
sylibr |
|- ( ph -> B e. ~P NN0 ) |
9 |
|
simp1l |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> x = A ) |
10 |
9
|
eleq2d |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( m e. x <-> m e. A ) ) |
11 |
|
simp1r |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> y = B ) |
12 |
11
|
eleq2d |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( ( n - m ) e. y <-> ( n - m ) e. B ) ) |
13 |
10 12
|
anbi12d |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( ( m e. x /\ ( n - m ) e. y ) <-> ( m e. A /\ ( n - m ) e. B ) ) ) |
14 |
13
|
rabbidv |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } = { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) |
15 |
14
|
oveq2d |
|- ( ( ( x = A /\ y = B ) /\ p e. ~P NN0 /\ m e. NN0 ) -> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) = ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) |
16 |
15
|
mpoeq3dva |
|- ( ( x = A /\ y = B ) -> ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) = ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) ) |
17 |
16
|
seqeq2d |
|- ( ( x = A /\ y = B ) -> seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ) |
18 |
17 3
|
eqtr4di |
|- ( ( x = A /\ y = B ) -> seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = P ) |
19 |
18
|
fveq1d |
|- ( ( x = A /\ y = B ) -> ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) |
20 |
19
|
eleq2d |
|- ( ( x = A /\ y = B ) -> ( k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) <-> k e. ( P ` ( k + 1 ) ) ) ) |
21 |
20
|
rabbidv |
|- ( ( x = A /\ y = B ) -> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) |
22 |
|
df-smu |
|- smul = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |
23 |
4
|
rabex |
|- { k e. NN0 | k e. ( P ` ( k + 1 ) ) } e. _V |
24 |
21 22 23
|
ovmpoa |
|- ( ( A e. ~P NN0 /\ B e. ~P NN0 ) -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) |
25 |
6 8 24
|
syl2anc |
|- ( ph -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) |