| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smuval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | smuval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | smuval.p | ⊢ 𝑃  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 5 | 4 | elpw2 | ⊢ ( 𝐴  ∈  𝒫  ℕ0  ↔  𝐴  ⊆  ℕ0 ) | 
						
							| 6 | 1 5 | sylibr | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  ℕ0 ) | 
						
							| 7 | 4 | elpw2 | ⊢ ( 𝐵  ∈  𝒫  ℕ0  ↔  𝐵  ⊆  ℕ0 ) | 
						
							| 8 | 2 7 | sylibr | ⊢ ( 𝜑  →  𝐵  ∈  𝒫  ℕ0 ) | 
						
							| 9 |  | simp1l | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  𝑥  =  𝐴 ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  ∈  𝑥  ↔  𝑚  ∈  𝐴 ) ) | 
						
							| 11 |  | simp1r | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  𝑦  =  𝐵 ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  −  𝑚 )  ∈  𝑦  ↔  ( 𝑛  −  𝑚 )  ∈  𝐵 ) ) | 
						
							| 13 | 10 12 | anbi12d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 )  ↔  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) ) ) | 
						
							| 14 | 13 | rabbidv | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑝  ∈  𝒫  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } )  =  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) | 
						
							| 16 | 15 | mpoeq3dva | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) )  =  ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ) | 
						
							| 17 | 16 | seqeq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) )  =  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝐴  ∧  ( 𝑛  −  𝑚 )  ∈  𝐵 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 18 | 17 3 | eqtr4di | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) )  =  𝑃 ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) )  ↔  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 21 | 20 | rabbidv | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) }  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 22 |  | df-smu | ⊢  smul   =  ( 𝑥  ∈  𝒫  ℕ0 ,  𝑦  ∈  𝒫  ℕ0  ↦  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( seq 0 ( ( 𝑝  ∈  𝒫  ℕ0 ,  𝑚  ∈  ℕ0  ↦  ( 𝑝  sadd  { 𝑛  ∈  ℕ0  ∣  ( 𝑚  ∈  𝑥  ∧  ( 𝑛  −  𝑚 )  ∈  𝑦 ) } ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 23 | 4 | rabex | ⊢ { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  V | 
						
							| 24 | 21 22 23 | ovmpoa | ⊢ ( ( 𝐴  ∈  𝒫  ℕ0  ∧  𝐵  ∈  𝒫  ℕ0 )  →  ( 𝐴  smul  𝐵 )  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 25 | 6 8 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  smul  𝐵 )  =  { 𝑘  ∈  ℕ0  ∣  𝑘  ∈  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) |