| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctendo |
⊢ TEndo |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
clh |
⊢ LHyp |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
| 7 |
|
vf |
⊢ 𝑓 |
| 8 |
7
|
cv |
⊢ 𝑓 |
| 9 |
|
cltrn |
⊢ LTrn |
| 10 |
5 9
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
| 11 |
3
|
cv |
⊢ 𝑤 |
| 12 |
11 10
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
| 13 |
12 12 8
|
wf |
⊢ 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
| 14 |
|
vx |
⊢ 𝑥 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
14
|
cv |
⊢ 𝑥 |
| 17 |
15
|
cv |
⊢ 𝑦 |
| 18 |
16 17
|
ccom |
⊢ ( 𝑥 ∘ 𝑦 ) |
| 19 |
18 8
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) |
| 20 |
16 8
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 21 |
17 8
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 22 |
20 21
|
ccom |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) |
| 23 |
19 22
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) |
| 24 |
23 15 12
|
wral |
⊢ ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) |
| 25 |
24 14 12
|
wral |
⊢ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) |
| 26 |
|
ctrl |
⊢ trL |
| 27 |
5 26
|
cfv |
⊢ ( trL ‘ 𝑘 ) |
| 28 |
11 27
|
cfv |
⊢ ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) |
| 29 |
20 28
|
cfv |
⊢ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 30 |
|
cple |
⊢ le |
| 31 |
5 30
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 32 |
16 28
|
cfv |
⊢ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) |
| 33 |
29 32 31
|
wbr |
⊢ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) |
| 34 |
33 14 12
|
wral |
⊢ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) |
| 35 |
13 25 34
|
w3a |
⊢ ( 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ) |
| 36 |
35 7
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ) } |
| 37 |
3 6 36
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∣ ( 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ) } ) |
| 38 |
1 2 37
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∣ ( 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ) } ) ) |
| 39 |
0 38
|
wceq |
⊢ TEndo = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∣ ( 𝑓 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑦 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑓 ‘ ( 𝑥 ∘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∘ ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ) } ) ) |