Step |
Hyp |
Ref |
Expression |
0 |
|
ctms |
β’ toMetSp |
1 |
|
vd |
β’ π |
2 |
|
cxmet |
β’ βMet |
3 |
2
|
crn |
β’ ran βMet |
4 |
3
|
cuni |
β’ βͺ ran βMet |
5 |
|
cbs |
β’ Base |
6 |
|
cnx |
β’ ndx |
7 |
6 5
|
cfv |
β’ ( Base β ndx ) |
8 |
1
|
cv |
β’ π |
9 |
8
|
cdm |
β’ dom π |
10 |
9
|
cdm |
β’ dom dom π |
11 |
7 10
|
cop |
β’ β¨ ( Base β ndx ) , dom dom π β© |
12 |
|
cds |
β’ dist |
13 |
6 12
|
cfv |
β’ ( dist β ndx ) |
14 |
13 8
|
cop |
β’ β¨ ( dist β ndx ) , π β© |
15 |
11 14
|
cpr |
β’ { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } |
16 |
|
csts |
β’ sSet |
17 |
|
cts |
β’ TopSet |
18 |
6 17
|
cfv |
β’ ( TopSet β ndx ) |
19 |
|
cmopn |
β’ MetOpen |
20 |
8 19
|
cfv |
β’ ( MetOpen β π ) |
21 |
18 20
|
cop |
β’ β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© |
22 |
15 21 16
|
co |
β’ ( { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } sSet β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© ) |
23 |
1 4 22
|
cmpt |
β’ ( π β βͺ ran βMet β¦ ( { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } sSet β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© ) ) |
24 |
0 23
|
wceq |
β’ toMetSp = ( π β βͺ ran βMet β¦ ( { β¨ ( Base β ndx ) , dom dom π β© , β¨ ( dist β ndx ) , π β© } sSet β¨ ( TopSet β ndx ) , ( MetOpen β π ) β© ) ) |