Metamath Proof Explorer


Definition df-tms

Description: Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tms toMetSp = ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctms ⊒ toMetSp
1 vd ⊒ 𝑑
2 cxmet ⊒ ∞Met
3 2 crn ⊒ ran ∞Met
4 3 cuni ⊒ βˆͺ ran ∞Met
5 cbs ⊒ Base
6 cnx ⊒ ndx
7 6 5 cfv ⊒ ( Base β€˜ ndx )
8 1 cv ⊒ 𝑑
9 8 cdm ⊒ dom 𝑑
10 9 cdm ⊒ dom dom 𝑑
11 7 10 cop ⊒ ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩
12 cds ⊒ dist
13 6 12 cfv ⊒ ( dist β€˜ ndx )
14 13 8 cop ⊒ ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩
15 11 14 cpr ⊒ { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ }
16 csts ⊒ sSet
17 cts ⊒ TopSet
18 6 17 cfv ⊒ ( TopSet β€˜ ndx )
19 cmopn ⊒ MetOpen
20 8 19 cfv ⊒ ( MetOpen β€˜ 𝑑 )
21 18 20 cop ⊒ ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩
22 15 21 16 co ⊒ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ )
23 1 4 22 cmpt ⊒ ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ ) )
24 0 23 wceq ⊒ toMetSp = ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( { ⟨ ( Base β€˜ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist β€˜ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝑑 ) ⟩ ) )