| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctopsep |
⊢ TopSep |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑗 |
| 5 |
4
|
cuni |
⊢ ∪ 𝑗 |
| 6 |
5
|
cpw |
⊢ 𝒫 ∪ 𝑗 |
| 7 |
3
|
cv |
⊢ 𝑥 |
| 8 |
|
cdom |
⊢ ≼ |
| 9 |
|
com |
⊢ ω |
| 10 |
7 9 8
|
wbr |
⊢ 𝑥 ≼ ω |
| 11 |
|
ccl |
⊢ cls |
| 12 |
4 11
|
cfv |
⊢ ( cls ‘ 𝑗 ) |
| 13 |
7 12
|
cfv |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) |
| 14 |
13 5
|
wceq |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = ∪ 𝑗 |
| 15 |
10 14
|
wa |
⊢ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = ∪ 𝑗 ) |
| 16 |
15 3 6
|
wrex |
⊢ ∃ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = ∪ 𝑗 ) |
| 17 |
16 1 2
|
crab |
⊢ { 𝑗 ∈ Top ∣ ∃ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = ∪ 𝑗 ) } |
| 18 |
0 17
|
wceq |
⊢ TopSep = { 𝑗 ∈ Top ∣ ∃ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = ∪ 𝑗 ) } |