Metamath Proof Explorer


Definition df-topsep

Description: A topology isseparable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-topsep TopSep = { 𝑗 ∈ Top ∣ ∃ 𝑥 ∈ 𝒫 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctopsep TopSep
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 5 cpw 𝒫 𝑗
7 3 cv 𝑥
8 cdom
9 com ω
10 7 9 8 wbr 𝑥 ≼ ω
11 ccl cls
12 4 11 cfv ( cls ‘ 𝑗 )
13 7 12 cfv ( ( cls ‘ 𝑗 ) ‘ 𝑥 )
14 13 5 wceq ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗
15 10 14 wa ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗 )
16 15 3 6 wrex 𝑥 ∈ 𝒫 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗 )
17 16 1 2 crab { 𝑗 ∈ Top ∣ ∃ 𝑥 ∈ 𝒫 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗 ) }
18 0 17 wceq TopSep = { 𝑗 ∈ Top ∣ ∃ 𝑥 ∈ 𝒫 𝑗 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) = 𝑗 ) }