Metamath Proof Explorer


Definition df-topsep

Description: A topology isseparable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-topsep
|- TopSep = { j e. Top | E. x e. ~P U. j ( x ~<_ _om /\ ( ( cls ` j ) ` x ) = U. j ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctopsep
 |-  TopSep
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 3 cv
 |-  x
8 cdom
 |-  ~<_
9 com
 |-  _om
10 7 9 8 wbr
 |-  x ~<_ _om
11 ccl
 |-  cls
12 4 11 cfv
 |-  ( cls ` j )
13 7 12 cfv
 |-  ( ( cls ` j ) ` x )
14 13 5 wceq
 |-  ( ( cls ` j ) ` x ) = U. j
15 10 14 wa
 |-  ( x ~<_ _om /\ ( ( cls ` j ) ` x ) = U. j )
16 15 3 6 wrex
 |-  E. x e. ~P U. j ( x ~<_ _om /\ ( ( cls ` j ) ` x ) = U. j )
17 16 1 2 crab
 |-  { j e. Top | E. x e. ~P U. j ( x ~<_ _om /\ ( ( cls ` j ) ` x ) = U. j ) }
18 0 17 wceq
 |-  TopSep = { j e. Top | E. x e. ~P U. j ( x ~<_ _om /\ ( ( cls ` j ) ` x ) = U. j ) }