Metamath Proof Explorer


Theorem dfbi1ALTb

Description: Further shorten dfbi1ALTa using simprimi . (Contributed by Eric Schmidt, 22-Oct-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion dfbi1ALTb ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 df-bi ¬ ( ( ( 𝜑𝜓 ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ( 𝜑𝜓 ) ) )
2 df-bi ¬ ( ( ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ( ( 𝜑𝜓 ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ( 𝜑𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑𝜓 ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) ) )
3 2 simprimi ( ¬ ( ( ( 𝜑𝜓 ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ( 𝜑𝜓 ) ) ) → ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) )
4 1 3 ax-mp ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) )