| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bi |
⊢ ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) |
| 2 |
|
df-bi |
⊢ ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) |
| 3 |
2
|
simprimi |
⊢ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |