Metamath Proof Explorer


Theorem dfdisjs3

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs3 Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑟 𝑥𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) }

Proof

Step Hyp Ref Expression
1 dfdisjs2 Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid3 ( ≀ 𝑟 ⊆ I ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑟 𝑥𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) )
3 1 2 rabbieq Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑟 𝑥𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) }