Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdisjs3 | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑟 𝑥 ∧ 𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs2 | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ⊆ I } | |
2 | cosscnvssid3 | ⊢ ( ≀ ◡ 𝑟 ⊆ I ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑟 𝑥 ∧ 𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) ) | |
3 | 1 2 | rabbieq | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑟 𝑥 ∧ 𝑣 𝑟 𝑥 ) → 𝑢 = 𝑣 ) } |