Metamath Proof Explorer


Theorem dfdisjs4

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs4 Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∃* 𝑢 𝑢 𝑟 𝑥 }

Proof

Step Hyp Ref Expression
1 dfdisjs2 Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid4 ( ≀ 𝑟 ⊆ I ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑟 𝑥 )
3 1 2 rabbieq Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∃* 𝑢 𝑢 𝑟 𝑥 }