Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdisjs2 | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ⊆ I } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ∈ CnvRefRels } | |
2 | cosselcnvrefrels2 | ⊢ ( ≀ ◡ 𝑟 ∈ CnvRefRels ↔ ( ≀ ◡ 𝑟 ⊆ I ∧ ≀ ◡ 𝑟 ∈ Rels ) ) | |
3 | cosscnvelrels | ⊢ ( 𝑟 ∈ Rels → ≀ ◡ 𝑟 ∈ Rels ) | |
4 | 3 | biantrud | ⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ⊆ I ↔ ( ≀ ◡ 𝑟 ⊆ I ∧ ≀ ◡ 𝑟 ∈ Rels ) ) ) |
5 | 2 4 | bitr4id | ⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ∈ CnvRefRels ↔ ≀ ◡ 𝑟 ⊆ I ) ) |
6 | 1 5 | rabimbieq | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ⊆ I } |