Metamath Proof Explorer


Theorem dfdisjs2

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs2 Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }

Proof

Step Hyp Ref Expression
1 dfdisjs Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cosselcnvrefrels2 ( ≀ 𝑟 ∈ CnvRefRels ↔ ( ≀ 𝑟 ⊆ I ∧ ≀ 𝑟 ∈ Rels ) )
3 cosscnvelrels ( 𝑟 ∈ Rels → ≀ 𝑟 ∈ Rels )
4 3 biantrud ( 𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ ≀ 𝑟 ∈ Rels ) ) )
5 2 4 bitr4id ( 𝑟 ∈ Rels → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑟 ⊆ I ) )
6 1 5 rabimbieq Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }