Metamath Proof Explorer


Theorem dfdisjs2

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs2 Disjs = r Rels | r -1 I

Proof

Step Hyp Ref Expression
1 dfdisjs Disjs = r Rels | r -1 CnvRefRels
2 cosselcnvrefrels2 r -1 CnvRefRels r -1 I r -1 Rels
3 cosscnvelrels r Rels r -1 Rels
4 3 biantrud r Rels r -1 I r -1 I r -1 Rels
5 2 4 bitr4id r Rels r -1 CnvRefRels r -1 I
6 1 5 rabimbieq Disjs = r Rels | r -1 I