Step |
Hyp |
Ref |
Expression |
1 |
|
dfdisjs2 |
⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ⊆ I } |
2 |
|
cosscnvssid5 |
⊢ ( ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) |
3 |
|
elrelsrelim |
⊢ ( 𝑟 ∈ Rels → Rel 𝑟 ) |
4 |
3
|
biantrud |
⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ⊆ I ↔ ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ) ) |
5 |
3
|
biantrud |
⊢ ( 𝑟 ∈ Rels → ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) ) |
6 |
4 5
|
bibi12d |
⊢ ( 𝑟 ∈ Rels → ( ( ≀ ◡ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) ↔ ( ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) ) ) |
7 |
2 6
|
mpbiri |
⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) ) |
8 |
1 7
|
rabimbieq |
⊢ Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) } |