Metamath Proof Explorer


Theorem dfdisjs5

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs5 Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) }

Proof

Step Hyp Ref Expression
1 dfdisjs2 Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid5 ( ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) )
3 elrelsrelim ( 𝑟 ∈ Rels → Rel 𝑟 )
4 3 biantrud ( 𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟 ) ) )
5 3 biantrud ( 𝑟 ∈ Rels → ( ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) )
6 4 5 bibi12d ( 𝑟 ∈ Rels → ( ( ≀ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) ↔ ( ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) ) )
7 2 6 mpbiri ( 𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) )
8 1 7 rabimbieq Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) }