| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fun |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
| 2 |
|
df-id |
⊢ I = { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } |
| 3 |
2
|
sseq2i |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } ) |
| 4 |
|
df-co |
⊢ ( 𝐴 ∘ ◡ 𝐴 ) = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) } |
| 5 |
4
|
sseq1i |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } ↔ { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } ) |
| 6 |
|
ssopab2bw |
⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } ↔ ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 7 |
3 5 6
|
3bitri |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
8 9
|
brcnv |
⊢ ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑦 ) |
| 11 |
10
|
anbi1i |
⊢ ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) ) |
| 12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) ) |
| 13 |
12
|
imbi1i |
⊢ ( ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 14 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 16 |
15
|
albii |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 17 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 18 |
16 17
|
bitri |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 19 |
18
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 20 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 21 |
7 19 20
|
3bitri |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 22 |
21
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 23 |
1 22
|
bitri |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |