| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dflidl2rng.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
dflidl2rng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
dflidl2rng.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Rng ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 7 |
6
|
subg0cl |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 8 |
7
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 9 |
4 5 8
|
3jca |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ) |
| 10 |
6 2 3 1
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 11 |
9 10
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 12 |
11
|
ralrimivva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 13 |
2
|
subgss |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
| 15 |
7
|
ne0d |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ≠ ∅ ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ≠ ∅ ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 18 |
17
|
subgcl |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 19 |
18
|
ad5ant245 |
⊢ ( ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 21 |
20
|
ex |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 22 |
21
|
ralimdvva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 24 |
1 2 17 3
|
islidl |
⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 25 |
14 16 23 24
|
syl3anbrc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ 𝑈 ) |
| 26 |
12 25
|
impbida |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ) |