Metamath Proof Explorer


Theorem dfvd2ani

Description: Inference form of dfvd2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2ani.1 (    (    𝜑    ,    𝜓    )    ▶    𝜒    )
Assertion dfvd2ani ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 dfvd2ani.1 (    (    𝜑    ,    𝜓    )    ▶    𝜒    )
2 dfvd2an ( (    (    𝜑    ,    𝜓    )    ▶    𝜒    ) ↔ ( ( 𝜑𝜓 ) → 𝜒 ) )
3 1 2 mpbi ( ( 𝜑𝜓 ) → 𝜒 )