Metamath Proof Explorer


Theorem disjimxrn

Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion disjimxrn ( Disj 𝑆 → Disj ( 𝑅𝑆 ) )

Proof

Step Hyp Ref Expression
1 disjorimxrn ( ( Disj 𝑅 ∨ Disj 𝑆 ) → Disj ( 𝑅𝑆 ) )
2 1 olcs ( Disj 𝑆 → Disj ( 𝑅𝑆 ) )