Description: A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disllycmp | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 2 | discmp | ⊢ ( { 𝑥 } ∈ Fin ↔ 𝒫 { 𝑥 } ∈ Comp ) | |
| 3 | 1 2 | mpbi | ⊢ 𝒫 { 𝑥 } ∈ Comp |
| 4 | 3 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ Comp |
| 5 | dislly | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally Comp ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ Comp ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp ) |