| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝒫 𝑋 ∈ Locally 𝐴 ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
3
|
snelpw |
⊢ ( 𝑥 ∈ 𝑋 ↔ { 𝑥 } ∈ 𝒫 𝑋 ) |
| 5 |
2 4
|
sylib |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 6 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { 𝑥 } ) |
| 8 |
|
llyi |
⊢ ( ( 𝒫 𝑋 ∈ Locally 𝐴 ∧ { 𝑥 } ∈ 𝒫 𝑋 ∧ 𝑥 ∈ { 𝑥 } ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) |
| 9 |
1 5 7 8
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) |
| 10 |
|
simpr1 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑦 ⊆ { 𝑥 } ) |
| 11 |
|
simpr2 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝑦 ) |
| 12 |
11
|
snssd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 13 |
10 12
|
eqssd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑦 = { 𝑥 } ) |
| 14 |
13
|
oveq2d |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) = ( 𝒫 𝑋 ↾t { 𝑥 } ) ) |
| 15 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) |
| 16 |
|
simplr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝑋 ) |
| 17 |
16
|
snssd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑋 ) |
| 18 |
|
restdis |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑥 } ⊆ 𝑋 ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) |
| 19 |
15 17 18
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) |
| 20 |
14 19
|
eqtrd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) = 𝒫 { 𝑥 } ) |
| 21 |
|
simpr3 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) |
| 22 |
20 21
|
eqeltrrd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) ) → 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 23 |
22
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 24 |
23
|
rexlimdvw |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ⊆ { 𝑥 } ∧ 𝑥 ∈ 𝑦 ∧ ( 𝒫 𝑋 ↾t 𝑦 ) ∈ 𝐴 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 25 |
9 24
|
mpd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 26 |
25
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝒫 𝑋 ∈ Locally 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 27 |
|
distop |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → 𝒫 𝑋 ∈ Top ) |
| 29 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → 𝑦 ⊆ 𝑋 ) |
| 31 |
|
ssralv |
⊢ ( 𝑦 ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 ) ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑥 ∈ 𝑦 ) |
| 34 |
33
|
snssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 35 |
30
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑦 ⊆ 𝑋 ) |
| 36 |
34 35
|
sstrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ⊆ 𝑋 ) |
| 37 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 38 |
37
|
elpw |
⊢ ( { 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑥 } ⊆ 𝑋 ) |
| 39 |
36 38
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 40 |
37
|
elpw |
⊢ ( { 𝑥 } ∈ 𝒫 𝑦 ↔ { 𝑥 } ⊆ 𝑦 ) |
| 41 |
34 40
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ 𝒫 𝑦 ) |
| 42 |
39 41
|
elind |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → { 𝑥 } ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ) |
| 43 |
|
snidg |
⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ { 𝑥 } ) |
| 44 |
43
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑥 ∈ { 𝑥 } ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) |
| 46 |
45 36 18
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) = 𝒫 { 𝑥 } ) |
| 47 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → 𝒫 { 𝑥 } ∈ 𝐴 ) |
| 48 |
46 47
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) |
| 49 |
|
eleq2 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ { 𝑥 } ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝒫 𝑋 ↾t 𝑢 ) = ( 𝒫 𝑋 ↾t { 𝑥 } ) ) |
| 51 |
50
|
eleq1d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) |
| 52 |
49 51
|
anbi12d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( { 𝑥 } ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ { 𝑥 } ∧ ( 𝒫 𝑋 ↾t { 𝑥 } ) ∈ 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 54 |
42 44 48 53
|
syl12anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝒫 { 𝑥 } ∈ 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 55 |
54
|
expr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝒫 { 𝑥 } ∈ 𝐴 → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 56 |
55
|
ralimdva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑦 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 57 |
32 56
|
syld |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 58 |
57
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 59 |
58
|
an32s |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 60 |
59
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 61 |
|
islly |
⊢ ( 𝒫 𝑋 ∈ Locally 𝐴 ↔ ( 𝒫 𝑋 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑥 ∈ 𝑦 ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ 𝒫 𝑦 ) ( 𝑥 ∈ 𝑢 ∧ ( 𝒫 𝑋 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 62 |
28 60 61
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) → 𝒫 𝑋 ∈ Locally 𝐴 ) |
| 63 |
26 62
|
impbida |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ 𝐴 ) ) |