Metamath Proof Explorer


Theorem restdis

Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion restdis ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝒫 𝐴t 𝐵 ) = 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 distop ( 𝐴𝑉 → 𝒫 𝐴 ∈ Top )
2 elpw2g ( 𝐴𝑉 → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
3 2 biimpar ( ( 𝐴𝑉𝐵𝐴 ) → 𝐵 ∈ 𝒫 𝐴 )
4 restopn2 ( ( 𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥𝐵 ) ) )
5 1 3 4 syl2an2r ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥𝐵 ) ) )
6 velpw ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 )
7 sstr ( ( 𝑥𝐵𝐵𝐴 ) → 𝑥𝐴 )
8 7 expcom ( 𝐵𝐴 → ( 𝑥𝐵𝑥𝐴 ) )
9 8 adantl ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥𝐵𝑥𝐴 ) )
10 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
11 9 10 syl6ibr ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥𝐵𝑥 ∈ 𝒫 𝐴 ) )
12 11 pm4.71rd ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥𝐵 ) ) )
13 6 12 syl5bb ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥 ∈ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥𝐵 ) ) )
14 5 13 bitr4d ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴t 𝐵 ) ↔ 𝑥 ∈ 𝒫 𝐵 ) )
15 14 eqrdv ( ( 𝐴𝑉𝐵𝐴 ) → ( 𝒫 𝐴t 𝐵 ) = 𝒫 𝐵 )