Metamath Proof Explorer


Theorem restdis

Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion restdis AVBA𝒫A𝑡B=𝒫B

Proof

Step Hyp Ref Expression
1 distop AV𝒫ATop
2 elpw2g AVB𝒫ABA
3 2 biimpar AVBAB𝒫A
4 restopn2 𝒫ATopB𝒫Ax𝒫A𝑡Bx𝒫AxB
5 1 3 4 syl2an2r AVBAx𝒫A𝑡Bx𝒫AxB
6 velpw x𝒫BxB
7 sstr xBBAxA
8 7 expcom BAxBxA
9 8 adantl AVBAxBxA
10 velpw x𝒫AxA
11 9 10 imbitrrdi AVBAxBx𝒫A
12 11 pm4.71rd AVBAxBx𝒫AxB
13 6 12 bitrid AVBAx𝒫Bx𝒫AxB
14 5 13 bitr4d AVBAx𝒫A𝑡Bx𝒫B
15 14 eqrdv AVBA𝒫A𝑡B=𝒫B