| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|
| 2 |
|
simpr |
|
| 3 |
|
vex |
|
| 4 |
3
|
snelpw |
|
| 5 |
2 4
|
sylib |
|
| 6 |
|
vsnid |
|
| 7 |
6
|
a1i |
|
| 8 |
|
llyi |
|
| 9 |
1 5 7 8
|
syl3anc |
|
| 10 |
|
simpr1 |
|
| 11 |
|
simpr2 |
|
| 12 |
11
|
snssd |
|
| 13 |
10 12
|
eqssd |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
simplll |
|
| 16 |
|
simplr |
|
| 17 |
16
|
snssd |
|
| 18 |
|
restdis |
|
| 19 |
15 17 18
|
syl2anc |
|
| 20 |
14 19
|
eqtrd |
|
| 21 |
|
simpr3 |
|
| 22 |
20 21
|
eqeltrrd |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
rexlimdvw |
|
| 25 |
9 24
|
mpd |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
|
distop |
|
| 28 |
27
|
adantr |
|
| 29 |
|
elpwi |
|
| 30 |
29
|
adantl |
|
| 31 |
|
ssralv |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
simprl |
|
| 34 |
33
|
snssd |
|
| 35 |
30
|
adantr |
|
| 36 |
34 35
|
sstrd |
|
| 37 |
|
vsnex |
|
| 38 |
37
|
elpw |
|
| 39 |
36 38
|
sylibr |
|
| 40 |
37
|
elpw |
|
| 41 |
34 40
|
sylibr |
|
| 42 |
39 41
|
elind |
|
| 43 |
|
snidg |
|
| 44 |
43
|
ad2antrl |
|
| 45 |
|
simpll |
|
| 46 |
45 36 18
|
syl2anc |
|
| 47 |
|
simprr |
|
| 48 |
46 47
|
eqeltrd |
|
| 49 |
|
eleq2 |
|
| 50 |
|
oveq2 |
|
| 51 |
50
|
eleq1d |
|
| 52 |
49 51
|
anbi12d |
|
| 53 |
52
|
rspcev |
|
| 54 |
42 44 48 53
|
syl12anc |
|
| 55 |
54
|
expr |
|
| 56 |
55
|
ralimdva |
|
| 57 |
32 56
|
syld |
|
| 58 |
57
|
imp |
|
| 59 |
58
|
an32s |
|
| 60 |
59
|
ralrimiva |
|
| 61 |
|
islly |
|
| 62 |
28 60 61
|
sylanbrc |
|
| 63 |
26 62
|
impbida |
|