| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 2 |
|
ssralv |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 ) |
| 4 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 → ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) |
| 5 |
3 4
|
syl |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) |
| 6 |
|
ioossre |
⊢ ( 𝐵 (,) 𝐴 ) ⊆ ℝ |
| 7 |
|
ssralv |
⊢ ( ( 𝐵 (,) 𝐴 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 ) |
| 9 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 → ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 10 |
8 9
|
syl |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 11 |
10
|
negeqd |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 12 |
5 11
|
ifeq12d |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) ) |
| 13 |
|
df-ditg |
⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) |
| 14 |
|
df-ditg |
⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 15 |
12 13 14
|
3eqtr4g |
⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |