| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dlatjmdi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dlatjmdi.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
dlatjmdi.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) |
| 5 |
4
|
odudlatb |
⊢ ( 𝐾 ∈ DLat → ( 𝐾 ∈ DLat ↔ ( ODual ‘ 𝐾 ) ∈ DLat ) ) |
| 6 |
5
|
ibi |
⊢ ( 𝐾 ∈ DLat → ( ODual ‘ 𝐾 ) ∈ DLat ) |
| 7 |
4 1
|
odubas |
⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
| 8 |
4 3
|
odujoin |
⊢ ∧ = ( join ‘ ( ODual ‘ 𝐾 ) ) |
| 9 |
4 2
|
odumeet |
⊢ ∨ = ( meet ‘ ( ODual ‘ 𝐾 ) ) |
| 10 |
7 8 9
|
dlatmjdi |
⊢ ( ( ( ODual ‘ 𝐾 ) ∈ DLat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑍 ) ) ) |
| 11 |
6 10
|
sylan |
⊢ ( ( 𝐾 ∈ DLat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑍 ) ) ) |