Step |
Hyp |
Ref |
Expression |
1 |
|
odudlat.d |
⊢ 𝐷 = ( ODual ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
5 |
2 3 4
|
latdisd |
⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ) |
6 |
5
|
bicomd |
⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
8 |
1
|
odulatb |
⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ Lat ↔ 𝐷 ∈ Lat ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
10 |
7 9
|
syl5bb |
⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
11 |
2 3 4
|
isdlat |
⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ) |
12 |
1 2
|
odubas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐷 ) |
13 |
1 4
|
odujoin |
⊢ ( meet ‘ 𝐾 ) = ( join ‘ 𝐷 ) |
14 |
1 3
|
odumeet |
⊢ ( join ‘ 𝐾 ) = ( meet ‘ 𝐷 ) |
15 |
12 13 14
|
isdlat |
⊢ ( 𝐷 ∈ DLat ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
16 |
10 11 15
|
3bitr4g |
⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ DLat ↔ 𝐷 ∈ DLat ) ) |