| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdlat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
isdlat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
isdlat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
| 7 |
6 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) |
| 9 |
8 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
| 10 |
9
|
sbceq1d |
⊢ ( 𝑘 = 𝐾 → ( [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 11 |
7 10
|
sbceqbid |
⊢ ( 𝑘 = 𝐾 → ( [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 12 |
5 11
|
sbceqbid |
⊢ ( 𝑘 = 𝐾 → ( [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ 𝐵 / 𝑏 ] [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 13 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 14 |
2
|
fvexi |
⊢ ∨ ∈ V |
| 15 |
3
|
fvexi |
⊢ ∧ ∈ V |
| 16 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 17 |
16
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 18 |
17
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑚 = ∧ ) |
| 20 |
|
eqidd |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑥 = 𝑥 ) |
| 21 |
|
simpl |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑗 = ∨ ) |
| 22 |
21
|
oveqd |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑦 𝑗 𝑧 ) = ( 𝑦 ∨ 𝑧 ) ) |
| 23 |
19 20 22
|
oveq123d |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 24 |
19
|
oveqd |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 𝑦 ) = ( 𝑥 ∧ 𝑦 ) ) |
| 25 |
19
|
oveqd |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 𝑧 ) = ( 𝑥 ∧ 𝑧 ) ) |
| 26 |
21 24 25
|
oveq123d |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 27 |
23 26
|
eqeq12d |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 29 |
28
|
2ralbidv |
⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 30 |
18 29
|
sylan9bb |
⊢ ( ( 𝑏 = 𝐵 ∧ ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 31 |
30
|
3impb |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 32 |
13 14 15 31
|
sbc3ie |
⊢ ( [ 𝐵 / 𝑏 ] [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 33 |
12 32
|
bitrdi |
⊢ ( 𝑘 = 𝐾 → ( [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 34 |
|
df-dlat |
⊢ DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |
| 35 |
33 34
|
elrab2 |
⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |