Metamath Proof Explorer


Theorem dmcoss3

Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019)

Ref Expression
Assertion dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof

Step Hyp Ref Expression
1 dfcoss3 𝑅 = ( 𝑅 𝑅 )
2 1 dmeqi dom ≀ 𝑅 = dom ( 𝑅 𝑅 )
3 rncnv ran 𝑅 = dom 𝑅
4 3 eqimssi ran 𝑅 ⊆ dom 𝑅
5 dmcosseq ( ran 𝑅 ⊆ dom 𝑅 → dom ( 𝑅 𝑅 ) = dom 𝑅 )
6 4 5 ax-mp dom ( 𝑅 𝑅 ) = dom 𝑅
7 2 6 eqtri dom ≀ 𝑅 = dom 𝑅