Metamath Proof Explorer
		
		
		
		Description:  Orthocomplements form a dual modular pair.  (Contributed by NM, 29-Apr-2006)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | mdoc1.1 | ⊢ 𝐴  ∈   Cℋ | 
				
					|  | Assertion | dmdoc2i | ⊢  ( ⊥ ‘ 𝐴 )  𝑀ℋ*  𝐴 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdoc1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 3 | 2 | dmdoc1i | ⊢ ( ⊥ ‘ 𝐴 )  𝑀ℋ*  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) | 
						
							| 4 | 1 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  =  𝐴 | 
						
							| 5 | 3 4 | breqtri | ⊢ ( ⊥ ‘ 𝐴 )  𝑀ℋ*  𝐴 |