| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdcompl.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
mdcompl.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 4 |
3
|
mdoc1i |
⊢ ( 𝐴 ∩ 𝐵 ) 𝑀ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 5 |
3
|
dmdoc2i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) 𝑀ℋ* ( 𝐴 ∩ 𝐵 ) |
| 6 |
|
ssid |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 7 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 8 |
7
|
chssii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
| 9 |
3
|
chjoi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ℋ |
| 10 |
8 9
|
sseqtrri |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 11 |
3
|
choccli |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ Cℋ |
| 12 |
3 11 1 2
|
mdslmd1i |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) 𝑀ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) 𝑀ℋ* ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) 𝑀ℋ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 13 |
4 5 6 10 12
|
mp4an |
⊢ ( 𝐴 𝑀ℋ 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) 𝑀ℋ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |