Step |
Hyp |
Ref |
Expression |
1 |
|
mdcompl.1 |
|- A e. CH |
2 |
|
mdcompl.2 |
|- B e. CH |
3 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
4 |
3
|
mdoc1i |
|- ( A i^i B ) MH ( _|_ ` ( A i^i B ) ) |
5 |
3
|
dmdoc2i |
|- ( _|_ ` ( A i^i B ) ) MH* ( A i^i B ) |
6 |
|
ssid |
|- ( A i^i B ) C_ ( A i^i B ) |
7 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
8 |
7
|
chssii |
|- ( A vH B ) C_ ~H |
9 |
3
|
chjoi |
|- ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) = ~H |
10 |
8 9
|
sseqtrri |
|- ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) |
11 |
3
|
choccli |
|- ( _|_ ` ( A i^i B ) ) e. CH |
12 |
3 11 1 2
|
mdslmd1i |
|- ( ( ( ( A i^i B ) MH ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` ( A i^i B ) ) MH* ( A i^i B ) ) /\ ( ( A i^i B ) C_ ( A i^i B ) /\ ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) ) ) -> ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) |
13 |
4 5 6 10 12
|
mp4an |
|- ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |