| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdcompl.1 |  |-  A e. CH | 
						
							| 2 |  | mdcompl.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 4 | 3 | mdoc1i |  |-  ( A i^i B ) MH ( _|_ ` ( A i^i B ) ) | 
						
							| 5 | 3 | dmdoc2i |  |-  ( _|_ ` ( A i^i B ) ) MH* ( A i^i B ) | 
						
							| 6 |  | ssid |  |-  ( A i^i B ) C_ ( A i^i B ) | 
						
							| 7 | 1 2 | chjcli |  |-  ( A vH B ) e. CH | 
						
							| 8 | 7 | chssii |  |-  ( A vH B ) C_ ~H | 
						
							| 9 | 3 | chjoi |  |-  ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) = ~H | 
						
							| 10 | 8 9 | sseqtrri |  |-  ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) | 
						
							| 11 | 3 | choccli |  |-  ( _|_ ` ( A i^i B ) ) e. CH | 
						
							| 12 | 3 11 1 2 | mdslmd1i |  |-  ( ( ( ( A i^i B ) MH ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` ( A i^i B ) ) MH* ( A i^i B ) ) /\ ( ( A i^i B ) C_ ( A i^i B ) /\ ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) ) ) -> ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) | 
						
							| 13 | 4 5 6 10 12 | mp4an |  |-  ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |