Metamath Proof Explorer


Theorem mdcompli

Description: A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of MaedaMaeda p. 4. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdcompl.1
|- A e. CH
mdcompl.2
|- B e. CH
Assertion mdcompli
|- ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) )

Proof

Step Hyp Ref Expression
1 mdcompl.1
 |-  A e. CH
2 mdcompl.2
 |-  B e. CH
3 1 2 chincli
 |-  ( A i^i B ) e. CH
4 3 mdoc1i
 |-  ( A i^i B ) MH ( _|_ ` ( A i^i B ) )
5 3 dmdoc2i
 |-  ( _|_ ` ( A i^i B ) ) MH* ( A i^i B )
6 ssid
 |-  ( A i^i B ) C_ ( A i^i B )
7 1 2 chjcli
 |-  ( A vH B ) e. CH
8 7 chssii
 |-  ( A vH B ) C_ ~H
9 3 chjoi
 |-  ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) = ~H
10 8 9 sseqtrri
 |-  ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) )
11 3 choccli
 |-  ( _|_ ` ( A i^i B ) ) e. CH
12 3 11 1 2 mdslmd1i
 |-  ( ( ( ( A i^i B ) MH ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` ( A i^i B ) ) MH* ( A i^i B ) ) /\ ( ( A i^i B ) C_ ( A i^i B ) /\ ( A vH B ) C_ ( ( A i^i B ) vH ( _|_ ` ( A i^i B ) ) ) ) ) -> ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) )
13 4 5 6 10 12 mp4an
 |-  ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) )