Metamath Proof Explorer


Theorem dmdcompli

Description: A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdcompl.1 𝐴C
mdcompl.2 𝐵C
Assertion dmdcompli ( 𝐴 𝑀* 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 mdcompl.1 𝐴C
2 mdcompl.2 𝐵C
3 1 2 chincli ( 𝐴𝐵 ) ∈ C
4 3 mdoc1i ( 𝐴𝐵 ) 𝑀 ( ⊥ ‘ ( 𝐴𝐵 ) )
5 3 dmdoc2i ( ⊥ ‘ ( 𝐴𝐵 ) ) 𝑀* ( 𝐴𝐵 )
6 ssid ( 𝐴𝐵 ) ⊆ ( 𝐴𝐵 )
7 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
8 7 chssii ( 𝐴 𝐵 ) ⊆ ℋ
9 3 chjoi ( ( 𝐴𝐵 ) ∨ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) = ℋ
10 8 9 sseqtrri ( 𝐴 𝐵 ) ⊆ ( ( 𝐴𝐵 ) ∨ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
11 3 choccli ( ⊥ ‘ ( 𝐴𝐵 ) ) ∈ C
12 3 11 1 2 mdsldmd1i ( ( ( ( 𝐴𝐵 ) 𝑀 ( ⊥ ‘ ( 𝐴𝐵 ) ) ∧ ( ⊥ ‘ ( 𝐴𝐵 ) ) 𝑀* ( 𝐴𝐵 ) ) ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴 𝐵 ) ⊆ ( ( 𝐴𝐵 ) ∨ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) ) → ( 𝐴 𝑀* 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) )
13 4 5 6 10 12 mp4an ( 𝐴 𝑀* 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )