| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdcompl.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | mdcompl.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 4 | 3 | mdoc1i | ⊢ ( 𝐴  ∩  𝐵 )  𝑀ℋ  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) | 
						
							| 5 | 3 | dmdoc2i | ⊢ ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) )  𝑀ℋ*  ( 𝐴  ∩  𝐵 ) | 
						
							| 6 |  | ssid | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  ( 𝐴  ∩  𝐵 ) | 
						
							| 7 | 1 2 | chjcli | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ | 
						
							| 8 | 7 | chssii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ⊆   ℋ | 
						
							| 9 | 3 | chjoi | ⊢ ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) )  =   ℋ | 
						
							| 10 | 8 9 | sseqtrri | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 11 | 3 | choccli | ⊢ ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) )  ∈   Cℋ | 
						
							| 12 | 3 11 1 2 | mdsldmd1i | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  𝑀ℋ  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) )  ∧  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) )  𝑀ℋ*  ( 𝐴  ∩  𝐵 ) )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  ( 𝐴  ∩  𝐵 )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) ) ) )  →  ( 𝐴  𝑀ℋ*  𝐵  ↔  ( 𝐴  ∩  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) )  𝑀ℋ*  ( 𝐵  ∩  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) ) ) ) | 
						
							| 13 | 4 5 6 10 12 | mp4an | ⊢ ( 𝐴  𝑀ℋ*  𝐵  ↔  ( 𝐴  ∩  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) )  𝑀ℋ*  ( 𝐵  ∩  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) ) ) |