Metamath Proof Explorer


Theorem mddmdin0i

Description: If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of Holland p. 1524 to hold. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mddmdin0.1 𝐴C
mddmdin0.2 𝐵C
mddmdin0.3 𝑥C𝑦C ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) → 𝑥 𝑀 𝑦 )
Assertion mddmdin0i ( 𝐴 𝑀* 𝐵𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 mddmdin0.1 𝐴C
2 mddmdin0.2 𝐵C
3 mddmdin0.3 𝑥C𝑦C ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) → 𝑥 𝑀 𝑦 )
4 inindir ( ( 𝐴𝐵 ) ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) = ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
5 1 2 chincli ( 𝐴𝐵 ) ∈ C
6 5 chocini ( ( 𝐴𝐵 ) ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) = 0
7 4 6 eqtr3i ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0
8 5 choccli ( ⊥ ‘ ( 𝐴𝐵 ) ) ∈ C
9 1 8 chincli ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∈ C
10 2 8 chincli ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∈ C
11 breq1 ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( 𝑥 𝑀* 𝑦 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ) )
12 ineq1 ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( 𝑥𝑦 ) = ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) )
13 12 eqeq1d ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( 𝑥𝑦 ) = 0 ↔ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ) )
14 11 13 anbi12d ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) ↔ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ) ) )
15 breq1 ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( 𝑥 𝑀 𝑦 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 𝑦 ) )
16 14 15 imbi12d ( 𝑥 = ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) → 𝑥 𝑀 𝑦 ) ↔ ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 𝑦 ) ) )
17 breq2 ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) )
18 ineq2 ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) )
19 18 eqeq1d ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ↔ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) )
20 17 19 anbi12d ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ) ↔ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) ) )
21 breq2 ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 𝑦 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) )
22 20 21 imbi12d ( 𝑦 = ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* 𝑦 ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ 𝑦 ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 𝑦 ) ↔ ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) ) )
23 16 22 rspc2v ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∈ C ∧ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∈ C ) → ( ∀ 𝑥C𝑦C ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) → 𝑥 𝑀 𝑦 ) → ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) ) )
24 9 10 23 mp2an ( ∀ 𝑥C𝑦C ( ( 𝑥 𝑀* 𝑦 ∧ ( 𝑥𝑦 ) = 0 ) → 𝑥 𝑀 𝑦 ) → ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) )
25 3 24 ax-mp ( ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∧ ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∩ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ) = 0 ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
26 7 25 mpan2 ( ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
27 1 2 dmdcompli ( 𝐴 𝑀* 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀* ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
28 1 2 mdcompli ( 𝐴 𝑀 𝐵 ↔ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) 𝑀 ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
29 26 27 28 3imtr4i ( 𝐴 𝑀* 𝐵𝐴 𝑀 𝐵 )