| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdjreu.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdjreu.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 | 1 2 | shseli | ⊢ ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 5 |  | reeanv | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑤  ∈  𝐵 ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 6 |  | eqtr2 | ⊢ ( ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 7 | 1 | sheli | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈   ℋ ) | 
						
							| 8 | 2 | sheli | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈   ℋ ) | 
						
							| 9 | 7 8 | anim12i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) ) | 
						
							| 10 | 1 | sheli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈   ℋ ) | 
						
							| 11 | 2 | sheli | ⊢ ( 𝑤  ∈  𝐵  →  𝑤  ∈   ℋ ) | 
						
							| 12 | 10 11 | anim12i | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 )  →  ( 𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ ) ) | 
						
							| 13 |  | hvaddsub4 | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ ) )  →  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 ) ) ) | 
						
							| 14 | 9 12 13 | syl2an | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 ) ) ) | 
						
							| 15 | 14 | an4s | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 ) ) ) | 
						
							| 16 | 15 | adantll | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 ) ) ) | 
						
							| 17 |  | shsubcl | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝑤  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑤  −ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 18 | 2 17 | mp3an1 | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑤  −ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( 𝑤  −ℎ  𝑦 )  ∈  𝐵 ) | 
						
							| 20 |  | eleq1 | ⊢ ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐵  ↔  ( 𝑤  −ℎ  𝑦 )  ∈  𝐵 ) ) | 
						
							| 21 | 19 20 | syl5ibrcom | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 ) ) | 
						
							| 23 |  | shsubcl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  −ℎ  𝑧 )  ∈  𝐴 ) | 
						
							| 24 | 1 23 | mp3an1 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  −ℎ  𝑧 )  ∈  𝐴 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  𝐴 ) | 
						
							| 26 | 22 25 | jctild | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐴  ∧  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 27 | 26 | adantll | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐴  ∧  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 28 |  | elin | ⊢ ( ( 𝑥  −ℎ  𝑧 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐴  ∧  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 ) ) | 
						
							| 29 |  | eleq2 | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ ) ) | 
						
							| 30 | 28 29 | bitr3id | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐴  ∧  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 )  ↔  ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ ) ) | 
						
							| 31 | 30 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( ( 𝑥  −ℎ  𝑧 )  ∈  𝐴  ∧  ( 𝑥  −ℎ  𝑧 )  ∈  𝐵 )  ↔  ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ ) ) | 
						
							| 32 | 27 31 | sylibd | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ ) ) | 
						
							| 33 |  | elch0 | ⊢ ( ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ  ↔  ( 𝑥  −ℎ  𝑧 )  =  0ℎ ) | 
						
							| 34 |  | hvsubeq0 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  −ℎ  𝑧 )  =  0ℎ  ↔  𝑥  =  𝑧 ) ) | 
						
							| 35 | 33 34 | bitrid | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ  ↔  𝑥  =  𝑧 ) ) | 
						
							| 36 | 7 10 35 | syl2an | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ  ↔  𝑥  =  𝑧 ) ) | 
						
							| 37 | 36 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  ∈  0ℋ  ↔  𝑥  =  𝑧 ) ) | 
						
							| 38 | 32 37 | sylibd | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  −ℎ  𝑧 )  =  ( 𝑤  −ℎ  𝑦 )  →  𝑥  =  𝑧 ) ) | 
						
							| 39 | 16 38 | sylbid | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 )  →  𝑥  =  𝑧 ) ) | 
						
							| 40 | 6 39 | syl5 | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 41 | 40 | rexlimdvva | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑤  ∈  𝐵 ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 42 | 5 41 | biimtrrid | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 43 | 42 | ralrimivva | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 44 | 4 43 | anim12i | ⊢ ( ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑦 ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  𝐶  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 47 | 46 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 49 | 48 | eqeq2d | ⊢ ( 𝑦  =  𝑤  →  ( 𝐶  =  ( 𝑧  +ℎ  𝑦 )  ↔  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑦 )  ↔  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 51 | 47 50 | bitrdi | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 52 | 51 | reu4 | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 53 | 44 52 | sylibr | ⊢ ( ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) |