Metamath Proof Explorer


Theorem cdjreui

Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of Holland p. 1520. (Contributed by NM, 20-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdjreu.1 𝐴S
cdjreu.2 𝐵S
Assertion cdjreui ( ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ∃! 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )

Proof

Step Hyp Ref Expression
1 cdjreu.1 𝐴S
2 cdjreu.2 𝐵S
3 1 2 shseli ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )
4 3 biimpi ( 𝐶 ∈ ( 𝐴 + 𝐵 ) → ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )
5 reeanv ( ∃ 𝑦𝐵𝑤𝐵 ( 𝐶 = ( 𝑥 + 𝑦 ) ∧ 𝐶 = ( 𝑧 + 𝑤 ) ) ↔ ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) )
6 eqtr2 ( ( 𝐶 = ( 𝑥 + 𝑦 ) ∧ 𝐶 = ( 𝑧 + 𝑤 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) )
7 1 sheli ( 𝑥𝐴𝑥 ∈ ℋ )
8 2 sheli ( 𝑦𝐵𝑦 ∈ ℋ )
9 7 8 anim12i ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) )
10 1 sheli ( 𝑧𝐴𝑧 ∈ ℋ )
11 2 sheli ( 𝑤𝐵𝑤 ∈ ℋ )
12 10 11 anim12i ( ( 𝑧𝐴𝑤𝐵 ) → ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) )
13 hvaddsub4 ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) ↔ ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) ) )
14 9 12 13 syl2an ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐴𝑤𝐵 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) ↔ ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) ) )
15 14 an4s ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) ↔ ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) ) )
16 15 adantll ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) ↔ ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) ) )
17 shsubcl ( ( 𝐵S𝑤𝐵𝑦𝐵 ) → ( 𝑤 𝑦 ) ∈ 𝐵 )
18 2 17 mp3an1 ( ( 𝑤𝐵𝑦𝐵 ) → ( 𝑤 𝑦 ) ∈ 𝐵 )
19 18 ancoms ( ( 𝑦𝐵𝑤𝐵 ) → ( 𝑤 𝑦 ) ∈ 𝐵 )
20 eleq1 ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( ( 𝑥 𝑧 ) ∈ 𝐵 ↔ ( 𝑤 𝑦 ) ∈ 𝐵 ) )
21 19 20 syl5ibrcom ( ( 𝑦𝐵𝑤𝐵 ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( 𝑥 𝑧 ) ∈ 𝐵 ) )
22 21 adantl ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( 𝑥 𝑧 ) ∈ 𝐵 ) )
23 shsubcl ( ( 𝐴S𝑥𝐴𝑧𝐴 ) → ( 𝑥 𝑧 ) ∈ 𝐴 )
24 1 23 mp3an1 ( ( 𝑥𝐴𝑧𝐴 ) → ( 𝑥 𝑧 ) ∈ 𝐴 )
25 24 adantr ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( 𝑥 𝑧 ) ∈ 𝐴 )
26 22 25 jctild ( ( ( 𝑥𝐴𝑧𝐴 ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( ( 𝑥 𝑧 ) ∈ 𝐴 ∧ ( 𝑥 𝑧 ) ∈ 𝐵 ) ) )
27 26 adantll ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( ( 𝑥 𝑧 ) ∈ 𝐴 ∧ ( 𝑥 𝑧 ) ∈ 𝐵 ) ) )
28 elin ( ( 𝑥 𝑧 ) ∈ ( 𝐴𝐵 ) ↔ ( ( 𝑥 𝑧 ) ∈ 𝐴 ∧ ( 𝑥 𝑧 ) ∈ 𝐵 ) )
29 eleq2 ( ( 𝐴𝐵 ) = 0 → ( ( 𝑥 𝑧 ) ∈ ( 𝐴𝐵 ) ↔ ( 𝑥 𝑧 ) ∈ 0 ) )
30 28 29 bitr3id ( ( 𝐴𝐵 ) = 0 → ( ( ( 𝑥 𝑧 ) ∈ 𝐴 ∧ ( 𝑥 𝑧 ) ∈ 𝐵 ) ↔ ( 𝑥 𝑧 ) ∈ 0 ) )
31 30 ad2antrr ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( ( 𝑥 𝑧 ) ∈ 𝐴 ∧ ( 𝑥 𝑧 ) ∈ 𝐵 ) ↔ ( 𝑥 𝑧 ) ∈ 0 ) )
32 27 31 sylibd ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → ( 𝑥 𝑧 ) ∈ 0 ) )
33 elch0 ( ( 𝑥 𝑧 ) ∈ 0 ↔ ( 𝑥 𝑧 ) = 0 )
34 hvsubeq0 ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 𝑧 ) = 0𝑥 = 𝑧 ) )
35 33 34 syl5bb ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 𝑧 ) ∈ 0𝑥 = 𝑧 ) )
36 7 10 35 syl2an ( ( 𝑥𝐴𝑧𝐴 ) → ( ( 𝑥 𝑧 ) ∈ 0𝑥 = 𝑧 ) )
37 36 ad2antlr ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) ∈ 0𝑥 = 𝑧 ) )
38 32 37 sylibd ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑤 𝑦 ) → 𝑥 = 𝑧 ) )
39 16 38 sylbid ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) → 𝑥 = 𝑧 ) )
40 6 39 syl5 ( ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐵𝑤𝐵 ) ) → ( ( 𝐶 = ( 𝑥 + 𝑦 ) ∧ 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) )
41 40 rexlimdvva ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ∃ 𝑦𝐵𝑤𝐵 ( 𝐶 = ( 𝑥 + 𝑦 ) ∧ 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) )
42 5 41 syl5bir ( ( ( 𝐴𝐵 ) = 0 ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) )
43 42 ralrimivva ( ( 𝐴𝐵 ) = 0 → ∀ 𝑥𝐴𝑧𝐴 ( ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) )
44 4 43 anim12i ( ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ( ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∀ 𝑥𝐴𝑧𝐴 ( ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) ) )
45 oveq1 ( 𝑥 = 𝑧 → ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑦 ) )
46 45 eqeq2d ( 𝑥 = 𝑧 → ( 𝐶 = ( 𝑥 + 𝑦 ) ↔ 𝐶 = ( 𝑧 + 𝑦 ) ) )
47 46 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦𝐵 𝐶 = ( 𝑧 + 𝑦 ) ) )
48 oveq2 ( 𝑦 = 𝑤 → ( 𝑧 + 𝑦 ) = ( 𝑧 + 𝑤 ) )
49 48 eqeq2d ( 𝑦 = 𝑤 → ( 𝐶 = ( 𝑧 + 𝑦 ) ↔ 𝐶 = ( 𝑧 + 𝑤 ) ) )
50 49 cbvrexvw ( ∃ 𝑦𝐵 𝐶 = ( 𝑧 + 𝑦 ) ↔ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) )
51 47 50 syl6bb ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) )
52 51 reu4 ( ∃! 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∀ 𝑥𝐴𝑧𝐴 ( ( ∃ 𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑤𝐵 𝐶 = ( 𝑧 + 𝑤 ) ) → 𝑥 = 𝑧 ) ) )
53 44 52 sylibr ( ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ∃! 𝑥𝐴𝑦𝐵 𝐶 = ( 𝑥 + 𝑦 ) )