Step |
Hyp |
Ref |
Expression |
1 |
|
cdjreu.1 |
|- A e. SH |
2 |
|
cdjreu.2 |
|- B e. SH |
3 |
1 2
|
shseli |
|- ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) |
4 |
3
|
biimpi |
|- ( C e. ( A +H B ) -> E. x e. A E. y e. B C = ( x +h y ) ) |
5 |
|
reeanv |
|- ( E. y e. B E. w e. B ( C = ( x +h y ) /\ C = ( z +h w ) ) <-> ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) ) |
6 |
|
eqtr2 |
|- ( ( C = ( x +h y ) /\ C = ( z +h w ) ) -> ( x +h y ) = ( z +h w ) ) |
7 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
8 |
2
|
sheli |
|- ( y e. B -> y e. ~H ) |
9 |
7 8
|
anim12i |
|- ( ( x e. A /\ y e. B ) -> ( x e. ~H /\ y e. ~H ) ) |
10 |
1
|
sheli |
|- ( z e. A -> z e. ~H ) |
11 |
2
|
sheli |
|- ( w e. B -> w e. ~H ) |
12 |
10 11
|
anim12i |
|- ( ( z e. A /\ w e. B ) -> ( z e. ~H /\ w e. ~H ) ) |
13 |
|
hvaddsub4 |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) |
14 |
9 12 13
|
syl2an |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. A /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) |
15 |
14
|
an4s |
|- ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) |
16 |
15
|
adantll |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) |
17 |
|
shsubcl |
|- ( ( B e. SH /\ w e. B /\ y e. B ) -> ( w -h y ) e. B ) |
18 |
2 17
|
mp3an1 |
|- ( ( w e. B /\ y e. B ) -> ( w -h y ) e. B ) |
19 |
18
|
ancoms |
|- ( ( y e. B /\ w e. B ) -> ( w -h y ) e. B ) |
20 |
|
eleq1 |
|- ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. B <-> ( w -h y ) e. B ) ) |
21 |
19 20
|
syl5ibrcom |
|- ( ( y e. B /\ w e. B ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. B ) ) |
22 |
21
|
adantl |
|- ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. B ) ) |
23 |
|
shsubcl |
|- ( ( A e. SH /\ x e. A /\ z e. A ) -> ( x -h z ) e. A ) |
24 |
1 23
|
mp3an1 |
|- ( ( x e. A /\ z e. A ) -> ( x -h z ) e. A ) |
25 |
24
|
adantr |
|- ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( x -h z ) e. A ) |
26 |
22 25
|
jctild |
|- ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) ) |
27 |
26
|
adantll |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) ) |
28 |
|
elin |
|- ( ( x -h z ) e. ( A i^i B ) <-> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) |
29 |
|
eleq2 |
|- ( ( A i^i B ) = 0H -> ( ( x -h z ) e. ( A i^i B ) <-> ( x -h z ) e. 0H ) ) |
30 |
28 29
|
bitr3id |
|- ( ( A i^i B ) = 0H -> ( ( ( x -h z ) e. A /\ ( x -h z ) e. B ) <-> ( x -h z ) e. 0H ) ) |
31 |
30
|
ad2antrr |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( ( x -h z ) e. A /\ ( x -h z ) e. B ) <-> ( x -h z ) e. 0H ) ) |
32 |
27 31
|
sylibd |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. 0H ) ) |
33 |
|
elch0 |
|- ( ( x -h z ) e. 0H <-> ( x -h z ) = 0h ) |
34 |
|
hvsubeq0 |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) = 0h <-> x = z ) ) |
35 |
33 34
|
syl5bb |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) e. 0H <-> x = z ) ) |
36 |
7 10 35
|
syl2an |
|- ( ( x e. A /\ z e. A ) -> ( ( x -h z ) e. 0H <-> x = z ) ) |
37 |
36
|
ad2antlr |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) e. 0H <-> x = z ) ) |
38 |
32 37
|
sylibd |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> x = z ) ) |
39 |
16 38
|
sylbid |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) -> x = z ) ) |
40 |
6 39
|
syl5 |
|- ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( C = ( x +h y ) /\ C = ( z +h w ) ) -> x = z ) ) |
41 |
40
|
rexlimdvva |
|- ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) -> ( E. y e. B E. w e. B ( C = ( x +h y ) /\ C = ( z +h w ) ) -> x = z ) ) |
42 |
5 41
|
syl5bir |
|- ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) -> ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) |
43 |
42
|
ralrimivva |
|- ( ( A i^i B ) = 0H -> A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) |
44 |
4 43
|
anim12i |
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( E. x e. A E. y e. B C = ( x +h y ) /\ A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) ) |
45 |
|
oveq1 |
|- ( x = z -> ( x +h y ) = ( z +h y ) ) |
46 |
45
|
eqeq2d |
|- ( x = z -> ( C = ( x +h y ) <-> C = ( z +h y ) ) ) |
47 |
46
|
rexbidv |
|- ( x = z -> ( E. y e. B C = ( x +h y ) <-> E. y e. B C = ( z +h y ) ) ) |
48 |
|
oveq2 |
|- ( y = w -> ( z +h y ) = ( z +h w ) ) |
49 |
48
|
eqeq2d |
|- ( y = w -> ( C = ( z +h y ) <-> C = ( z +h w ) ) ) |
50 |
49
|
cbvrexvw |
|- ( E. y e. B C = ( z +h y ) <-> E. w e. B C = ( z +h w ) ) |
51 |
47 50
|
bitrdi |
|- ( x = z -> ( E. y e. B C = ( x +h y ) <-> E. w e. B C = ( z +h w ) ) ) |
52 |
51
|
reu4 |
|- ( E! x e. A E. y e. B C = ( x +h y ) <-> ( E. x e. A E. y e. B C = ( x +h y ) /\ A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) ) |
53 |
44 52
|
sylibr |
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> E! x e. A E. y e. B C = ( x +h y ) ) |