| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdjreu.1 |  |-  A e. SH | 
						
							| 2 |  | cdjreu.2 |  |-  B e. SH | 
						
							| 3 | 1 2 | shseli |  |-  ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) | 
						
							| 4 | 3 | biimpi |  |-  ( C e. ( A +H B ) -> E. x e. A E. y e. B C = ( x +h y ) ) | 
						
							| 5 |  | reeanv |  |-  ( E. y e. B E. w e. B ( C = ( x +h y ) /\ C = ( z +h w ) ) <-> ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) ) | 
						
							| 6 |  | eqtr2 |  |-  ( ( C = ( x +h y ) /\ C = ( z +h w ) ) -> ( x +h y ) = ( z +h w ) ) | 
						
							| 7 | 1 | sheli |  |-  ( x e. A -> x e. ~H ) | 
						
							| 8 | 2 | sheli |  |-  ( y e. B -> y e. ~H ) | 
						
							| 9 | 7 8 | anim12i |  |-  ( ( x e. A /\ y e. B ) -> ( x e. ~H /\ y e. ~H ) ) | 
						
							| 10 | 1 | sheli |  |-  ( z e. A -> z e. ~H ) | 
						
							| 11 | 2 | sheli |  |-  ( w e. B -> w e. ~H ) | 
						
							| 12 | 10 11 | anim12i |  |-  ( ( z e. A /\ w e. B ) -> ( z e. ~H /\ w e. ~H ) ) | 
						
							| 13 |  | hvaddsub4 |  |-  ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) | 
						
							| 14 | 9 12 13 | syl2an |  |-  ( ( ( x e. A /\ y e. B ) /\ ( z e. A /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) | 
						
							| 15 | 14 | an4s |  |-  ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) | 
						
							| 16 | 15 | adantll |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) <-> ( x -h z ) = ( w -h y ) ) ) | 
						
							| 17 |  | shsubcl |  |-  ( ( B e. SH /\ w e. B /\ y e. B ) -> ( w -h y ) e. B ) | 
						
							| 18 | 2 17 | mp3an1 |  |-  ( ( w e. B /\ y e. B ) -> ( w -h y ) e. B ) | 
						
							| 19 | 18 | ancoms |  |-  ( ( y e. B /\ w e. B ) -> ( w -h y ) e. B ) | 
						
							| 20 |  | eleq1 |  |-  ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. B <-> ( w -h y ) e. B ) ) | 
						
							| 21 | 19 20 | syl5ibrcom |  |-  ( ( y e. B /\ w e. B ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. B ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. B ) ) | 
						
							| 23 |  | shsubcl |  |-  ( ( A e. SH /\ x e. A /\ z e. A ) -> ( x -h z ) e. A ) | 
						
							| 24 | 1 23 | mp3an1 |  |-  ( ( x e. A /\ z e. A ) -> ( x -h z ) e. A ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( x -h z ) e. A ) | 
						
							| 26 | 22 25 | jctild |  |-  ( ( ( x e. A /\ z e. A ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) ) | 
						
							| 27 | 26 | adantll |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) ) | 
						
							| 28 |  | elin |  |-  ( ( x -h z ) e. ( A i^i B ) <-> ( ( x -h z ) e. A /\ ( x -h z ) e. B ) ) | 
						
							| 29 |  | eleq2 |  |-  ( ( A i^i B ) = 0H -> ( ( x -h z ) e. ( A i^i B ) <-> ( x -h z ) e. 0H ) ) | 
						
							| 30 | 28 29 | bitr3id |  |-  ( ( A i^i B ) = 0H -> ( ( ( x -h z ) e. A /\ ( x -h z ) e. B ) <-> ( x -h z ) e. 0H ) ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( ( x -h z ) e. A /\ ( x -h z ) e. B ) <-> ( x -h z ) e. 0H ) ) | 
						
							| 32 | 27 31 | sylibd |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> ( x -h z ) e. 0H ) ) | 
						
							| 33 |  | elch0 |  |-  ( ( x -h z ) e. 0H <-> ( x -h z ) = 0h ) | 
						
							| 34 |  | hvsubeq0 |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) = 0h <-> x = z ) ) | 
						
							| 35 | 33 34 | bitrid |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) e. 0H <-> x = z ) ) | 
						
							| 36 | 7 10 35 | syl2an |  |-  ( ( x e. A /\ z e. A ) -> ( ( x -h z ) e. 0H <-> x = z ) ) | 
						
							| 37 | 36 | ad2antlr |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) e. 0H <-> x = z ) ) | 
						
							| 38 | 32 37 | sylibd |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x -h z ) = ( w -h y ) -> x = z ) ) | 
						
							| 39 | 16 38 | sylbid |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( x +h y ) = ( z +h w ) -> x = z ) ) | 
						
							| 40 | 6 39 | syl5 |  |-  ( ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) /\ ( y e. B /\ w e. B ) ) -> ( ( C = ( x +h y ) /\ C = ( z +h w ) ) -> x = z ) ) | 
						
							| 41 | 40 | rexlimdvva |  |-  ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) -> ( E. y e. B E. w e. B ( C = ( x +h y ) /\ C = ( z +h w ) ) -> x = z ) ) | 
						
							| 42 | 5 41 | biimtrrid |  |-  ( ( ( A i^i B ) = 0H /\ ( x e. A /\ z e. A ) ) -> ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) | 
						
							| 43 | 42 | ralrimivva |  |-  ( ( A i^i B ) = 0H -> A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) | 
						
							| 44 | 4 43 | anim12i |  |-  ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( E. x e. A E. y e. B C = ( x +h y ) /\ A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) ) | 
						
							| 45 |  | oveq1 |  |-  ( x = z -> ( x +h y ) = ( z +h y ) ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( x = z -> ( C = ( x +h y ) <-> C = ( z +h y ) ) ) | 
						
							| 47 | 46 | rexbidv |  |-  ( x = z -> ( E. y e. B C = ( x +h y ) <-> E. y e. B C = ( z +h y ) ) ) | 
						
							| 48 |  | oveq2 |  |-  ( y = w -> ( z +h y ) = ( z +h w ) ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( y = w -> ( C = ( z +h y ) <-> C = ( z +h w ) ) ) | 
						
							| 50 | 49 | cbvrexvw |  |-  ( E. y e. B C = ( z +h y ) <-> E. w e. B C = ( z +h w ) ) | 
						
							| 51 | 47 50 | bitrdi |  |-  ( x = z -> ( E. y e. B C = ( x +h y ) <-> E. w e. B C = ( z +h w ) ) ) | 
						
							| 52 | 51 | reu4 |  |-  ( E! x e. A E. y e. B C = ( x +h y ) <-> ( E. x e. A E. y e. B C = ( x +h y ) /\ A. x e. A A. z e. A ( ( E. y e. B C = ( x +h y ) /\ E. w e. B C = ( z +h w ) ) -> x = z ) ) ) | 
						
							| 53 | 44 52 | sylibr |  |-  ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> E! x e. A E. y e. B C = ( x +h y ) ) |