| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdjreu.1 |
|
| 2 |
|
cdjreu.2 |
|
| 3 |
1 2
|
shseli |
|
| 4 |
3
|
biimpi |
|
| 5 |
|
reeanv |
|
| 6 |
|
eqtr2 |
|
| 7 |
1
|
sheli |
|
| 8 |
2
|
sheli |
|
| 9 |
7 8
|
anim12i |
|
| 10 |
1
|
sheli |
|
| 11 |
2
|
sheli |
|
| 12 |
10 11
|
anim12i |
|
| 13 |
|
hvaddsub4 |
|
| 14 |
9 12 13
|
syl2an |
|
| 15 |
14
|
an4s |
|
| 16 |
15
|
adantll |
|
| 17 |
|
shsubcl |
|
| 18 |
2 17
|
mp3an1 |
|
| 19 |
18
|
ancoms |
|
| 20 |
|
eleq1 |
|
| 21 |
19 20
|
syl5ibrcom |
|
| 22 |
21
|
adantl |
|
| 23 |
|
shsubcl |
|
| 24 |
1 23
|
mp3an1 |
|
| 25 |
24
|
adantr |
|
| 26 |
22 25
|
jctild |
|
| 27 |
26
|
adantll |
|
| 28 |
|
elin |
|
| 29 |
|
eleq2 |
|
| 30 |
28 29
|
bitr3id |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
27 31
|
sylibd |
|
| 33 |
|
elch0 |
|
| 34 |
|
hvsubeq0 |
|
| 35 |
33 34
|
bitrid |
|
| 36 |
7 10 35
|
syl2an |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
32 37
|
sylibd |
|
| 39 |
16 38
|
sylbid |
|
| 40 |
6 39
|
syl5 |
|
| 41 |
40
|
rexlimdvva |
|
| 42 |
5 41
|
biimtrrid |
|
| 43 |
42
|
ralrimivva |
|
| 44 |
4 43
|
anim12i |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
46
|
rexbidv |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
49
|
cbvrexvw |
|
| 51 |
47 50
|
bitrdi |
|
| 52 |
51
|
reu4 |
|
| 53 |
44 52
|
sylibr |
|