Step |
Hyp |
Ref |
Expression |
1 |
|
cdj1.1 |
|
2 |
|
cdj1.2 |
|
3 |
|
gt0ne0 |
|
4 |
|
rereccl |
|
5 |
3 4
|
syldan |
|
6 |
5
|
adantrr |
|
7 |
|
recgt0 |
|
8 |
7
|
adantrr |
|
9 |
|
1red |
|
10 |
|
1re |
|
11 |
|
neg1cn |
|
12 |
2
|
sheli |
|
13 |
|
hvmulcl |
|
14 |
11 12 13
|
sylancr |
|
15 |
|
normcl |
|
16 |
14 15
|
syl |
|
17 |
16
|
adantl |
|
18 |
|
readdcl |
|
19 |
10 17 18
|
sylancr |
|
20 |
19
|
adantr |
|
21 |
1
|
sheli |
|
22 |
|
hvsubcl |
|
23 |
21 12 22
|
syl2an |
|
24 |
|
normcl |
|
25 |
23 24
|
syl |
|
26 |
|
remulcl |
|
27 |
25 26
|
sylan2 |
|
28 |
27
|
anassrs |
|
29 |
28
|
adantr |
|
30 |
|
normge0 |
|
31 |
14 30
|
syl |
|
32 |
|
addge01 |
|
33 |
10 32
|
mpan |
|
34 |
33
|
biimpa |
|
35 |
16 31 34
|
syl2anc |
|
36 |
35
|
ad2antlr |
|
37 |
|
shmulcl |
|
38 |
2 11 37
|
mp3an12 |
|
39 |
|
fveq2 |
|
40 |
39
|
oveq2d |
|
41 |
|
oveq2 |
|
42 |
41
|
fveq2d |
|
43 |
42
|
oveq2d |
|
44 |
40 43
|
breq12d |
|
45 |
44
|
rspcv |
|
46 |
38 45
|
syl |
|
47 |
46
|
imp |
|
48 |
47
|
ad2ant2lr |
|
49 |
|
oveq1 |
|
50 |
49
|
eqcoms |
|
51 |
50
|
ad2antll |
|
52 |
|
hvsubval |
|
53 |
21 12 52
|
syl2an |
|
54 |
53
|
fveq2d |
|
55 |
54
|
oveq2d |
|
56 |
55
|
adantll |
|
57 |
56
|
adantr |
|
58 |
48 51 57
|
3brtr4d |
|
59 |
9 20 29 36 58
|
letrd |
|
60 |
59
|
ex |
|
61 |
60
|
adantllr |
|
62 |
|
simplll |
|
63 |
23
|
adantll |
|
64 |
63 24
|
syl |
|
65 |
62 64 26
|
syl2anc |
|
66 |
|
simpllr |
|
67 |
|
lediv1 |
|
68 |
10 67
|
mp3an1 |
|
69 |
65 62 66 68
|
syl12anc |
|
70 |
61 69
|
sylibd |
|
71 |
70
|
imp |
|
72 |
25
|
recnd |
|
73 |
72
|
adantll |
|
74 |
|
recn |
|
75 |
74
|
ad3antrrr |
|
76 |
3
|
ad2antrr |
|
77 |
73 75 76
|
divcan3d |
|
78 |
77
|
adantr |
|
79 |
71 78
|
breqtrd |
|
80 |
79
|
exp43 |
|
81 |
80
|
com23 |
|
82 |
81
|
ralrimdv |
|
83 |
82
|
ralimdva |
|
84 |
83
|
impr |
|
85 |
6 8 84
|
jca32 |
|
86 |
85
|
ex |
|
87 |
|
breq2 |
|
88 |
|
breq1 |
|
89 |
88
|
imbi2d |
|
90 |
89
|
2ralbidv |
|
91 |
87 90
|
anbi12d |
|
92 |
91
|
rspcev |
|
93 |
86 92
|
syl6 |
|
94 |
93
|
rexlimiv |
|