| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj1.1 |  | 
						
							| 2 |  | cdj1.2 |  | 
						
							| 3 |  | gt0ne0 |  | 
						
							| 4 |  | rereccl |  | 
						
							| 5 | 3 4 | syldan |  | 
						
							| 6 | 5 | adantrr |  | 
						
							| 7 |  | recgt0 |  | 
						
							| 8 | 7 | adantrr |  | 
						
							| 9 |  | 1red |  | 
						
							| 10 |  | 1re |  | 
						
							| 11 |  | neg1cn |  | 
						
							| 12 | 2 | sheli |  | 
						
							| 13 |  | hvmulcl |  | 
						
							| 14 | 11 12 13 | sylancr |  | 
						
							| 15 |  | normcl |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | readdcl |  | 
						
							| 19 | 10 17 18 | sylancr |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 1 | sheli |  | 
						
							| 22 |  | hvsubcl |  | 
						
							| 23 | 21 12 22 | syl2an |  | 
						
							| 24 |  | normcl |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 |  | remulcl |  | 
						
							| 27 | 25 26 | sylan2 |  | 
						
							| 28 | 27 | anassrs |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | normge0 |  | 
						
							| 31 | 14 30 | syl |  | 
						
							| 32 |  | addge01 |  | 
						
							| 33 | 10 32 | mpan |  | 
						
							| 34 | 33 | biimpa |  | 
						
							| 35 | 16 31 34 | syl2anc |  | 
						
							| 36 | 35 | ad2antlr |  | 
						
							| 37 |  | shmulcl |  | 
						
							| 38 | 2 11 37 | mp3an12 |  | 
						
							| 39 |  | fveq2 |  | 
						
							| 40 | 39 | oveq2d |  | 
						
							| 41 |  | oveq2 |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 | 40 43 | breq12d |  | 
						
							| 45 | 44 | rspcv |  | 
						
							| 46 | 38 45 | syl |  | 
						
							| 47 | 46 | imp |  | 
						
							| 48 | 47 | ad2ant2lr |  | 
						
							| 49 |  | oveq1 |  | 
						
							| 50 | 49 | eqcoms |  | 
						
							| 51 | 50 | ad2antll |  | 
						
							| 52 |  | hvsubval |  | 
						
							| 53 | 21 12 52 | syl2an |  | 
						
							| 54 | 53 | fveq2d |  | 
						
							| 55 | 54 | oveq2d |  | 
						
							| 56 | 55 | adantll |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 48 51 57 | 3brtr4d |  | 
						
							| 59 | 9 20 29 36 58 | letrd |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 60 | adantllr |  | 
						
							| 62 |  | simplll |  | 
						
							| 63 | 23 | adantll |  | 
						
							| 64 | 63 24 | syl |  | 
						
							| 65 | 62 64 26 | syl2anc |  | 
						
							| 66 |  | simpllr |  | 
						
							| 67 |  | lediv1 |  | 
						
							| 68 | 10 67 | mp3an1 |  | 
						
							| 69 | 65 62 66 68 | syl12anc |  | 
						
							| 70 | 61 69 | sylibd |  | 
						
							| 71 | 70 | imp |  | 
						
							| 72 | 25 | recnd |  | 
						
							| 73 | 72 | adantll |  | 
						
							| 74 |  | recn |  | 
						
							| 75 | 74 | ad3antrrr |  | 
						
							| 76 | 3 | ad2antrr |  | 
						
							| 77 | 73 75 76 | divcan3d |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 71 78 | breqtrd |  | 
						
							| 80 | 79 | exp43 |  | 
						
							| 81 | 80 | com23 |  | 
						
							| 82 | 81 | ralrimdv |  | 
						
							| 83 | 82 | ralimdva |  | 
						
							| 84 | 83 | impr |  | 
						
							| 85 | 6 8 84 | jca32 |  | 
						
							| 86 | 85 | ex |  | 
						
							| 87 |  | breq2 |  | 
						
							| 88 |  | breq1 |  | 
						
							| 89 | 88 | imbi2d |  | 
						
							| 90 | 89 | 2ralbidv |  | 
						
							| 91 | 87 90 | anbi12d |  | 
						
							| 92 | 91 | rspcev |  | 
						
							| 93 | 86 92 | syl6 |  | 
						
							| 94 | 93 | rexlimiv |  |