| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj1.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj1.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | gt0ne0 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  →  𝑤  ≠  0 ) | 
						
							| 4 |  | rereccl | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑤  ≠  0 )  →  ( 1  /  𝑤 )  ∈  ℝ ) | 
						
							| 5 | 3 4 | syldan | ⊢ ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  →  ( 1  /  𝑤 )  ∈  ℝ ) | 
						
							| 6 | 5 | adantrr | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) ) )  →  ( 1  /  𝑤 )  ∈  ℝ ) | 
						
							| 7 |  | recgt0 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  →  0  <  ( 1  /  𝑤 ) ) | 
						
							| 8 | 7 | adantrr | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) ) )  →  0  <  ( 1  /  𝑤 ) ) | 
						
							| 9 |  | 1red | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  1  ∈  ℝ ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 12 | 2 | sheli | ⊢ ( 𝑧  ∈  𝐵  →  𝑧  ∈   ℋ ) | 
						
							| 13 |  | hvmulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑧  ∈   ℋ )  →  ( - 1  ·ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( 𝑧  ∈  𝐵  →  ( - 1  ·ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 15 |  | normcl | ⊢ ( ( - 1  ·ℎ  𝑧 )  ∈   ℋ  →  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑧  ∈  𝐵  →  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 18 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 19 | 10 17 18 | sylancr | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 21 | 1 | sheli | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈   ℋ ) | 
						
							| 22 |  | hvsubcl | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  −ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 23 | 21 12 22 | syl2an | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 24 |  | normcl | ⊢ ( ( 𝑦  −ℎ  𝑧 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 26 |  | remulcl | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℝ )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 28 | 27 | anassrs | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 30 |  | normge0 | ⊢ ( ( - 1  ·ℎ  𝑧 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 31 | 14 30 | syl | ⊢ ( 𝑧  ∈  𝐵  →  0  ≤  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 32 |  | addge01 | ⊢ ( ( 1  ∈  ℝ  ∧  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ )  →  ( 0  ≤  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ↔  1  ≤  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 33 | 10 32 | mpan | ⊢ ( ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ  →  ( 0  ≤  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ↔  1  ≤  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 34 | 33 | biimpa | ⊢ ( ( ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  →  1  ≤  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 35 | 16 31 34 | syl2anc | ⊢ ( 𝑧  ∈  𝐵  →  1  ≤  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 36 | 35 | ad2antlr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  1  ≤  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 37 |  | shmulcl | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  - 1  ∈  ℂ  ∧  𝑧  ∈  𝐵 )  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 38 | 2 11 37 | mp3an12 | ⊢ ( 𝑧  ∈  𝐵  →  ( - 1  ·ℎ  𝑧 )  ∈  𝐵 ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( normℎ ‘ 𝑣 )  =  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( 𝑦  +ℎ  𝑣 )  =  ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) )  =  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  =  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 44 | 40 43 | breq12d | ⊢ ( 𝑣  =  ( - 1  ·ℎ  𝑧 )  →  ( ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 45 | 44 | rspcv | ⊢ ( ( - 1  ·ℎ  𝑧 )  ∈  𝐵  →  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 46 | 38 45 | syl | ⊢ ( 𝑧  ∈  𝐵  →  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( 𝑧  ∈  𝐵  ∧  ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) )  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 48 | 47 | ad2ant2lr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 49 |  | oveq1 | ⊢ ( 1  =  ( normℎ ‘ 𝑦 )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 50 | 49 | eqcoms | ⊢ ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 51 | 50 | ad2antll | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 52 |  | hvsubval | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  −ℎ  𝑧 )  =  ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 53 | 21 12 52 | syl2an | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑧 )  =  ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  =  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  =  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 56 | 55 | adantll | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  =  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  =  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  ( - 1  ·ℎ  𝑧 ) ) ) ) ) | 
						
							| 58 | 48 51 57 | 3brtr4d | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 1  +  ( normℎ ‘ ( - 1  ·ℎ  𝑧 ) ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) | 
						
							| 59 | 9 20 29 36 58 | letrd | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 )  →  1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 61 | 60 | adantllr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 )  →  1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 62 |  | simplll | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  𝑤  ∈  ℝ ) | 
						
							| 63 | 23 | adantll | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  −ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 64 | 63 24 | syl | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℝ ) | 
						
							| 65 | 62 64 26 | syl2anc | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ ) | 
						
							| 66 |  | simpllr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  0  <  𝑤 ) | 
						
							| 67 |  | lediv1 | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ  ∧  ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 ) )  →  ( 1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ↔  ( 1  /  𝑤 )  ≤  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 ) ) ) | 
						
							| 68 | 10 67 | mp3an1 | ⊢ ( ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ∈  ℝ  ∧  ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 ) )  →  ( 1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ↔  ( 1  /  𝑤 )  ≤  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 ) ) ) | 
						
							| 69 | 65 62 66 68 | syl12anc | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( 1  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ↔  ( 1  /  𝑤 )  ≤  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 ) ) ) | 
						
							| 70 | 61 69 | sylibd | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 )  →  ( 1  /  𝑤 )  ≤  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 1  /  𝑤 )  ≤  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 ) ) | 
						
							| 72 | 25 | recnd | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℂ ) | 
						
							| 73 | 72 | adantll | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ∈  ℂ ) | 
						
							| 74 |  | recn | ⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℂ ) | 
						
							| 75 | 74 | ad3antrrr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  𝑤  ∈  ℂ ) | 
						
							| 76 | 3 | ad2antrr | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  𝑤  ≠  0 ) | 
						
							| 77 | 73 75 76 | divcan3d | ⊢ ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 )  =  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( ( 𝑤  ·  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  /  𝑤 )  =  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) | 
						
							| 79 | 71 78 | breqtrd | ⊢ ( ( ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  ∧  𝑧  ∈  𝐵 )  ∧  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  ∧  ( normℎ ‘ 𝑦 )  =  1 ) )  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) | 
						
							| 80 | 79 | exp43 | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 81 | 80 | com23 | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ( 𝑧  ∈  𝐵  →  ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 82 | 81 | ralrimdv | ⊢ ( ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  ∧  𝑦  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 83 | 82 | ralimdva | ⊢ ( ( 𝑤  ∈  ℝ  ∧  0  <  𝑤 )  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) )  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 84 | 83 | impr | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) ) )  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) | 
						
							| 85 | 6 8 84 | jca32 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) ) )  →  ( ( 1  /  𝑤 )  ∈  ℝ  ∧  ( 0  <  ( 1  /  𝑤 )  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 86 | 85 | ex | ⊢ ( 𝑤  ∈  ℝ  →  ( ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) )  →  ( ( 1  /  𝑤 )  ∈  ℝ  ∧  ( 0  <  ( 1  /  𝑤 )  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) ) | 
						
							| 87 |  | breq2 | ⊢ ( 𝑥  =  ( 1  /  𝑤 )  →  ( 0  <  𝑥  ↔  0  <  ( 1  /  𝑤 ) ) ) | 
						
							| 88 |  | breq1 | ⊢ ( 𝑥  =  ( 1  /  𝑤 )  →  ( 𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) )  ↔  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) | 
						
							| 89 | 88 | imbi2d | ⊢ ( 𝑥  =  ( 1  /  𝑤 )  →  ( ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 90 | 89 | 2ralbidv | ⊢ ( 𝑥  =  ( 1  /  𝑤 )  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) )  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 91 | 87 90 | anbi12d | ⊢ ( 𝑥  =  ( 1  /  𝑤 )  →  ( ( 0  <  𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) )  ↔  ( 0  <  ( 1  /  𝑤 )  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 92 | 91 | rspcev | ⊢ ( ( ( 1  /  𝑤 )  ∈  ℝ  ∧  ( 0  <  ( 1  /  𝑤 )  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  ( 1  /  𝑤 )  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) )  →  ∃ 𝑥  ∈  ℝ ( 0  <  𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) | 
						
							| 93 | 86 92 | syl6 | ⊢ ( 𝑤  ∈  ℝ  →  ( ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) )  →  ∃ 𝑥  ∈  ℝ ( 0  <  𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) ) | 
						
							| 94 | 93 | rexlimiv | ⊢ ( ∃ 𝑤  ∈  ℝ ( 0  <  𝑤  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑣  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑣 ) )  ≤  ( 𝑤  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑣 ) ) ) )  →  ∃ 𝑥  ∈  ℝ ( 0  <  𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ( ( normℎ ‘ 𝑦 )  =  1  →  𝑥  ≤  ( normℎ ‘ ( 𝑦  −ℎ  𝑧 ) ) ) ) ) |