Step |
Hyp |
Ref |
Expression |
1 |
|
cdj1.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj1.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
gt0ne0 |
⊢ ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) → 𝑤 ≠ 0 ) |
4 |
|
rereccl |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑤 ≠ 0 ) → ( 1 / 𝑤 ) ∈ ℝ ) |
5 |
3 4
|
syldan |
⊢ ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) → ( 1 / 𝑤 ) ∈ ℝ ) |
6 |
5
|
adantrr |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) ) → ( 1 / 𝑤 ) ∈ ℝ ) |
7 |
|
recgt0 |
⊢ ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) → 0 < ( 1 / 𝑤 ) ) |
8 |
7
|
adantrr |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) ) → 0 < ( 1 / 𝑤 ) ) |
9 |
|
1red |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → 1 ∈ ℝ ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
12 |
2
|
sheli |
⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ℋ ) |
13 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( - 1 ·ℎ 𝑧 ) ∈ ℋ ) |
14 |
11 12 13
|
sylancr |
⊢ ( 𝑧 ∈ 𝐵 → ( - 1 ·ℎ 𝑧 ) ∈ ℋ ) |
15 |
|
normcl |
⊢ ( ( - 1 ·ℎ 𝑧 ) ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ) |
16 |
14 15
|
syl |
⊢ ( 𝑧 ∈ 𝐵 → ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ) |
18 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ∈ ℝ ) |
19 |
10 17 18
|
sylancr |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ∈ ℝ ) |
21 |
1
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
22 |
|
hvsubcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 −ℎ 𝑧 ) ∈ ℋ ) |
23 |
21 12 22
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑧 ) ∈ ℋ ) |
24 |
|
normcl |
⊢ ( ( 𝑦 −ℎ 𝑧 ) ∈ ℋ → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℝ ) |
25 |
23 24
|
syl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℝ ) |
26 |
|
remulcl |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℝ ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ) |
27 |
25 26
|
sylan2 |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ) |
28 |
27
|
anassrs |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ) |
30 |
|
normge0 |
⊢ ( ( - 1 ·ℎ 𝑧 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) |
31 |
14 30
|
syl |
⊢ ( 𝑧 ∈ 𝐵 → 0 ≤ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) |
32 |
|
addge01 |
⊢ ( ( 1 ∈ ℝ ∧ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ) → ( 0 ≤ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ↔ 1 ≤ ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
33 |
10 32
|
mpan |
⊢ ( ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ → ( 0 ≤ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ↔ 1 ≤ ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) → 1 ≤ ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
35 |
16 31 34
|
syl2anc |
⊢ ( 𝑧 ∈ 𝐵 → 1 ≤ ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → 1 ≤ ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
37 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
38 |
2 11 37
|
mp3an12 |
⊢ ( 𝑧 ∈ 𝐵 → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
39 |
|
fveq2 |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( normℎ ‘ 𝑣 ) = ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( 𝑦 +ℎ 𝑣 ) = ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) = ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) = ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
44 |
40 43
|
breq12d |
⊢ ( 𝑣 = ( - 1 ·ℎ 𝑧 ) → ( ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) ) |
45 |
44
|
rspcv |
⊢ ( ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 → ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) ) |
46 |
38 45
|
syl |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) ) |
47 |
46
|
imp |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
48 |
47
|
ad2ant2lr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
49 |
|
oveq1 |
⊢ ( 1 = ( normℎ ‘ 𝑦 ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
50 |
49
|
eqcoms |
⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
51 |
50
|
ad2antll |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ) |
52 |
|
hvsubval |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 −ℎ 𝑧 ) = ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
53 |
21 12 52
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑧 ) = ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
54 |
53
|
fveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) = ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
56 |
55
|
adantll |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) = ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) = ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ ( - 1 ·ℎ 𝑧 ) ) ) ) ) |
58 |
48 51 57
|
3brtr4d |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 1 + ( normℎ ‘ ( - 1 ·ℎ 𝑧 ) ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) |
59 |
9 20 29 36 58
|
letrd |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) |
60 |
59
|
ex |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
61 |
60
|
adantllr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
62 |
|
simplll |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑤 ∈ ℝ ) |
63 |
23
|
adantll |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 −ℎ 𝑧 ) ∈ ℋ ) |
64 |
63 24
|
syl |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℝ ) |
65 |
62 64 26
|
syl2anc |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ) |
66 |
|
simpllr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → 0 < 𝑤 ) |
67 |
|
lediv1 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ∧ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ) → ( 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ↔ ( 1 / 𝑤 ) ≤ ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) ) ) |
68 |
10 67
|
mp3an1 |
⊢ ( ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ∈ ℝ ∧ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ) → ( 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ↔ ( 1 / 𝑤 ) ≤ ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) ) ) |
69 |
65 62 66 68
|
syl12anc |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1 ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ↔ ( 1 / 𝑤 ) ≤ ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) ) ) |
70 |
61 69
|
sylibd |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( 1 / 𝑤 ) ≤ ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) ) ) |
71 |
70
|
imp |
⊢ ( ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 1 / 𝑤 ) ≤ ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) ) |
72 |
25
|
recnd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℂ ) |
73 |
72
|
adantll |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ∈ ℂ ) |
74 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
75 |
74
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑤 ∈ ℂ ) |
76 |
3
|
ad2antrr |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑤 ≠ 0 ) |
77 |
73 75 76
|
divcan3d |
⊢ ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) = ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( ( 𝑤 · ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) / 𝑤 ) = ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) |
79 |
71 78
|
breqtrd |
⊢ ( ( ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) ) → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) |
80 |
79
|
exp43 |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) |
81 |
80
|
com23 |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ( 𝑧 ∈ 𝐵 → ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) |
82 |
81
|
ralrimdv |
⊢ ( ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
83 |
82
|
ralimdva |
⊢ ( ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
84 |
83
|
impr |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) |
85 |
6 8 84
|
jca32 |
⊢ ( ( 𝑤 ∈ ℝ ∧ ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) ) → ( ( 1 / 𝑤 ) ∈ ℝ ∧ ( 0 < ( 1 / 𝑤 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) |
86 |
85
|
ex |
⊢ ( 𝑤 ∈ ℝ → ( ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) → ( ( 1 / 𝑤 ) ∈ ℝ ∧ ( 0 < ( 1 / 𝑤 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) ) |
87 |
|
breq2 |
⊢ ( 𝑥 = ( 1 / 𝑤 ) → ( 0 < 𝑥 ↔ 0 < ( 1 / 𝑤 ) ) ) |
88 |
|
breq1 |
⊢ ( 𝑥 = ( 1 / 𝑤 ) → ( 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ↔ ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) |
89 |
88
|
imbi2d |
⊢ ( 𝑥 = ( 1 / 𝑤 ) → ( ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
90 |
89
|
2ralbidv |
⊢ ( 𝑥 = ( 1 / 𝑤 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
91 |
87 90
|
anbi12d |
⊢ ( 𝑥 = ( 1 / 𝑤 ) → ( ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ↔ ( 0 < ( 1 / 𝑤 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) |
92 |
91
|
rspcev |
⊢ ( ( ( 1 / 𝑤 ) ∈ ℝ ∧ ( 0 < ( 1 / 𝑤 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → ( 1 / 𝑤 ) ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) → ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |
93 |
86 92
|
syl6 |
⊢ ( 𝑤 ∈ ℝ → ( ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) → ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) ) |
94 |
93
|
rexlimiv |
⊢ ( ∃ 𝑤 ∈ ℝ ( 0 < 𝑤 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑣 ) ) ≤ ( 𝑤 · ( normℎ ‘ ( 𝑦 +ℎ 𝑣 ) ) ) ) → ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) = 1 → 𝑥 ≤ ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) ) ) ) |