| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdj1.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
cdj1.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
| 4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 5 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑤 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) |
| 6 |
2 4 5
|
mp3an12 |
⊢ ( 𝑤 ∈ 𝐵 → ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) |
| 7 |
6
|
anim2i |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) ) |
| 8 |
3 7
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 𝑤 ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝑦 = 𝑤 → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ) |
| 11 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑤 → ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) = ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ) |
| 13 |
10 12
|
breq12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) = ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) |
| 19 |
15 18
|
breq12d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
| 20 |
13 19
|
rspc2v |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
| 21 |
8 20
|
syl |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
| 23 |
1 2
|
shincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |
| 24 |
23
|
sheli |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ ℋ ) |
| 25 |
|
normneg |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) = ( normℎ ‘ 𝑤 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑤 ) ) ) |
| 27 |
|
normcl |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ 𝑤 ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ 𝑤 ) ∈ ℂ ) |
| 29 |
28
|
2timesd |
⊢ ( 𝑤 ∈ ℋ → ( 2 · ( normℎ ‘ 𝑤 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑤 ) ) ) |
| 30 |
26 29
|
eqtr4d |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( 2 · ( normℎ ‘ 𝑤 ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( 2 · ( normℎ ‘ 𝑤 ) ) ) |
| 32 |
|
hvnegid |
⊢ ( 𝑤 ∈ ℋ → ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) = 0ℎ ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) = ( normℎ ‘ 0ℎ ) ) |
| 34 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
| 35 |
33 34
|
eqtrdi |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) = 0 ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑤 ∈ ℋ → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = ( 𝑥 · 0 ) ) |
| 37 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 38 |
37
|
mul01d |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 · 0 ) = 0 ) |
| 39 |
36 38
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = 0 ) |
| 40 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 41 |
39 40
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = ( 2 · 0 ) ) |
| 42 |
31 41
|
breq12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
| 43 |
|
0re |
⊢ 0 ∈ ℝ |
| 44 |
|
letri3 |
⊢ ( ( ( normℎ ‘ 𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( normℎ ‘ 𝑤 ) = 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
| 45 |
27 43 44
|
sylancl |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) = 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
| 46 |
|
normge0 |
⊢ ( 𝑤 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑤 ) ) |
| 47 |
46
|
biantrud |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
| 48 |
|
2re |
⊢ 2 ∈ ℝ |
| 49 |
|
2pos |
⊢ 0 < 2 |
| 50 |
48 49
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 51 |
|
lemul2 |
⊢ ( ( ( normℎ ‘ 𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
| 52 |
43 50 51
|
mp3an23 |
⊢ ( ( normℎ ‘ 𝑤 ) ∈ ℝ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
| 53 |
27 52
|
syl |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
| 54 |
45 47 53
|
3bitr2rd |
⊢ ( 𝑤 ∈ ℋ → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ ( normℎ ‘ 𝑤 ) = 0 ) ) |
| 55 |
|
norm-i |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) = 0 ↔ 𝑤 = 0ℎ ) ) |
| 56 |
54 55
|
bitrd |
⊢ ( 𝑤 ∈ ℋ → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0ℎ ) ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0ℎ ) ) |
| 58 |
42 57
|
bitrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ 𝑤 = 0ℎ ) ) |
| 59 |
24 58
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ 𝑤 = 0ℎ ) ) |
| 60 |
22 59
|
sylibd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑤 = 0ℎ ) ) |
| 61 |
60
|
impancom |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 = 0ℎ ) ) |
| 62 |
|
elch0 |
⊢ ( 𝑤 ∈ 0ℋ ↔ 𝑤 = 0ℎ ) |
| 63 |
61 62
|
imbitrrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 0ℋ ) ) |
| 64 |
63
|
ssrdv |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) |
| 65 |
64
|
ex |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 66 |
|
shle0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ → ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 67 |
23 66
|
ax-mp |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |
| 68 |
65 67
|
imbitrdi |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 69 |
68
|
adantld |
⊢ ( 𝑥 ∈ ℝ → ( ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| 70 |
69
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |