Step |
Hyp |
Ref |
Expression |
1 |
|
cdj1.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj1.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
|
shmulcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑤 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) |
6 |
2 4 5
|
mp3an12 |
⊢ ( 𝑤 ∈ 𝐵 → ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) ) |
8 |
3 7
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 𝑤 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑦 = 𝑤 → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑤 → ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) = ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ) |
13 |
10 12
|
breq12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) = ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) |
19 |
15 18
|
breq12d |
⊢ ( 𝑧 = ( - 1 ·ℎ 𝑤 ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
20 |
13 19
|
rspc2v |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ ( - 1 ·ℎ 𝑤 ) ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
21 |
8 20
|
syl |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ) ) |
23 |
1 2
|
shincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |
24 |
23
|
sheli |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ ℋ ) |
25 |
|
normneg |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) = ( normℎ ‘ 𝑤 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑤 ) ) ) |
27 |
|
normcl |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ 𝑤 ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ 𝑤 ) ∈ ℂ ) |
29 |
28
|
2timesd |
⊢ ( 𝑤 ∈ ℋ → ( 2 · ( normℎ ‘ 𝑤 ) ) = ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ 𝑤 ) ) ) |
30 |
26 29
|
eqtr4d |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( 2 · ( normℎ ‘ 𝑤 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) = ( 2 · ( normℎ ‘ 𝑤 ) ) ) |
32 |
|
hvnegid |
⊢ ( 𝑤 ∈ ℋ → ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) = 0ℎ ) |
33 |
32
|
fveq2d |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) = ( normℎ ‘ 0ℎ ) ) |
34 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
35 |
33 34
|
eqtrdi |
⊢ ( 𝑤 ∈ ℋ → ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) = 0 ) |
36 |
35
|
oveq2d |
⊢ ( 𝑤 ∈ ℋ → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = ( 𝑥 · 0 ) ) |
37 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
38 |
37
|
mul01d |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 · 0 ) = 0 ) |
39 |
36 38
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = 0 ) |
40 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
41 |
39 40
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) = ( 2 · 0 ) ) |
42 |
31 41
|
breq12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
43 |
|
0re |
⊢ 0 ∈ ℝ |
44 |
|
letri3 |
⊢ ( ( ( normℎ ‘ 𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( normℎ ‘ 𝑤 ) = 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
45 |
27 43 44
|
sylancl |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) = 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
46 |
|
normge0 |
⊢ ( 𝑤 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑤 ) ) |
47 |
46
|
biantrud |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( ( normℎ ‘ 𝑤 ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ 𝑤 ) ) ) ) |
48 |
|
2re |
⊢ 2 ∈ ℝ |
49 |
|
2pos |
⊢ 0 < 2 |
50 |
48 49
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
51 |
|
lemul2 |
⊢ ( ( ( normℎ ‘ 𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
52 |
43 50 51
|
mp3an23 |
⊢ ( ( normℎ ‘ 𝑤 ) ∈ ℝ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
53 |
27 52
|
syl |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) ≤ 0 ↔ ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ) ) |
54 |
45 47 53
|
3bitr2rd |
⊢ ( 𝑤 ∈ ℋ → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ ( normℎ ‘ 𝑤 ) = 0 ) ) |
55 |
|
norm-i |
⊢ ( 𝑤 ∈ ℋ → ( ( normℎ ‘ 𝑤 ) = 0 ↔ 𝑤 = 0ℎ ) ) |
56 |
54 55
|
bitrd |
⊢ ( 𝑤 ∈ ℋ → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0ℎ ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( 2 · ( normℎ ‘ 𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0ℎ ) ) |
58 |
42 57
|
bitrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ 𝑤 = 0ℎ ) ) |
59 |
24 58
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑤 ) + ( normℎ ‘ ( - 1 ·ℎ 𝑤 ) ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑤 +ℎ ( - 1 ·ℎ 𝑤 ) ) ) ) ↔ 𝑤 = 0ℎ ) ) |
60 |
22 59
|
sylibd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑤 = 0ℎ ) ) |
61 |
60
|
impancom |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 = 0ℎ ) ) |
62 |
|
elch0 |
⊢ ( 𝑤 ∈ 0ℋ ↔ 𝑤 = 0ℎ ) |
63 |
61 62
|
syl6ibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 0ℋ ) ) |
64 |
63
|
ssrdv |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) |
65 |
64
|
ex |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
66 |
|
shle0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ → ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
67 |
23 66
|
ax-mp |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |
68 |
65 67
|
syl6ib |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
69 |
68
|
adantld |
⊢ ( 𝑥 ∈ ℝ → ( ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
70 |
69
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ ( 𝑦 +ℎ 𝑧 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |