Metamath Proof Explorer


Theorem cdj3lem1

Description: A property of " A and B are completely disjoint subspaces." Part of Lemma 5 of Holland p. 1520. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion cdj3lem1 ( ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝐴𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 cdj1.1 𝐴S
2 cdj1.2 𝐵S
3 elin ( 𝑤 ∈ ( 𝐴𝐵 ) ↔ ( 𝑤𝐴𝑤𝐵 ) )
4 neg1cn - 1 ∈ ℂ
5 shmulcl ( ( 𝐵S ∧ - 1 ∈ ℂ ∧ 𝑤𝐵 ) → ( - 1 · 𝑤 ) ∈ 𝐵 )
6 2 4 5 mp3an12 ( 𝑤𝐵 → ( - 1 · 𝑤 ) ∈ 𝐵 )
7 6 anim2i ( ( 𝑤𝐴𝑤𝐵 ) → ( 𝑤𝐴 ∧ ( - 1 · 𝑤 ) ∈ 𝐵 ) )
8 3 7 sylbi ( 𝑤 ∈ ( 𝐴𝐵 ) → ( 𝑤𝐴 ∧ ( - 1 · 𝑤 ) ∈ 𝐵 ) )
9 fveq2 ( 𝑦 = 𝑤 → ( norm𝑦 ) = ( norm𝑤 ) )
10 9 oveq1d ( 𝑦 = 𝑤 → ( ( norm𝑦 ) + ( norm𝑧 ) ) = ( ( norm𝑤 ) + ( norm𝑧 ) ) )
11 fvoveq1 ( 𝑦 = 𝑤 → ( norm ‘ ( 𝑦 + 𝑧 ) ) = ( norm ‘ ( 𝑤 + 𝑧 ) ) )
12 11 oveq2d ( 𝑦 = 𝑤 → ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝑥 · ( norm ‘ ( 𝑤 + 𝑧 ) ) ) )
13 10 12 breq12d ( 𝑦 = 𝑤 → ( ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ↔ ( ( norm𝑤 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + 𝑧 ) ) ) ) )
14 fveq2 ( 𝑧 = ( - 1 · 𝑤 ) → ( norm𝑧 ) = ( norm ‘ ( - 1 · 𝑤 ) ) )
15 14 oveq2d ( 𝑧 = ( - 1 · 𝑤 ) → ( ( norm𝑤 ) + ( norm𝑧 ) ) = ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) )
16 oveq2 ( 𝑧 = ( - 1 · 𝑤 ) → ( 𝑤 + 𝑧 ) = ( 𝑤 + ( - 1 · 𝑤 ) ) )
17 16 fveq2d ( 𝑧 = ( - 1 · 𝑤 ) → ( norm ‘ ( 𝑤 + 𝑧 ) ) = ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) )
18 17 oveq2d ( 𝑧 = ( - 1 · 𝑤 ) → ( 𝑥 · ( norm ‘ ( 𝑤 + 𝑧 ) ) ) = ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) )
19 15 18 breq12d ( 𝑧 = ( - 1 · 𝑤 ) → ( ( ( norm𝑤 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + 𝑧 ) ) ) ↔ ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ) )
20 13 19 rspc2v ( ( 𝑤𝐴 ∧ ( - 1 · 𝑤 ) ∈ 𝐵 ) → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ) )
21 8 20 syl ( 𝑤 ∈ ( 𝐴𝐵 ) → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ) )
22 21 adantl ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ) )
23 1 2 shincli ( 𝐴𝐵 ) ∈ S
24 23 sheli ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑤 ∈ ℋ )
25 normneg ( 𝑤 ∈ ℋ → ( norm ‘ ( - 1 · 𝑤 ) ) = ( norm𝑤 ) )
26 25 oveq2d ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) = ( ( norm𝑤 ) + ( norm𝑤 ) ) )
27 normcl ( 𝑤 ∈ ℋ → ( norm𝑤 ) ∈ ℝ )
28 27 recnd ( 𝑤 ∈ ℋ → ( norm𝑤 ) ∈ ℂ )
29 28 2timesd ( 𝑤 ∈ ℋ → ( 2 · ( norm𝑤 ) ) = ( ( norm𝑤 ) + ( norm𝑤 ) ) )
30 26 29 eqtr4d ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) = ( 2 · ( norm𝑤 ) ) )
31 30 adantl ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) = ( 2 · ( norm𝑤 ) ) )
32 hvnegid ( 𝑤 ∈ ℋ → ( 𝑤 + ( - 1 · 𝑤 ) ) = 0 )
33 32 fveq2d ( 𝑤 ∈ ℋ → ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) = ( norm ‘ 0 ) )
34 norm0 ( norm ‘ 0 ) = 0
35 33 34 eqtrdi ( 𝑤 ∈ ℋ → ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) = 0 )
36 35 oveq2d ( 𝑤 ∈ ℋ → ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) = ( 𝑥 · 0 ) )
37 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
38 37 mul01d ( 𝑥 ∈ ℝ → ( 𝑥 · 0 ) = 0 )
39 36 38 sylan9eqr ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) = 0 )
40 2t0e0 ( 2 · 0 ) = 0
41 39 40 eqtr4di ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) = ( 2 · 0 ) )
42 31 41 breq12d ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ↔ ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ) )
43 0re 0 ∈ ℝ
44 letri3 ( ( ( norm𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( norm𝑤 ) = 0 ↔ ( ( norm𝑤 ) ≤ 0 ∧ 0 ≤ ( norm𝑤 ) ) ) )
45 27 43 44 sylancl ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) = 0 ↔ ( ( norm𝑤 ) ≤ 0 ∧ 0 ≤ ( norm𝑤 ) ) ) )
46 normge0 ( 𝑤 ∈ ℋ → 0 ≤ ( norm𝑤 ) )
47 46 biantrud ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) ≤ 0 ↔ ( ( norm𝑤 ) ≤ 0 ∧ 0 ≤ ( norm𝑤 ) ) ) )
48 2re 2 ∈ ℝ
49 2pos 0 < 2
50 48 49 pm3.2i ( 2 ∈ ℝ ∧ 0 < 2 )
51 lemul2 ( ( ( norm𝑤 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( norm𝑤 ) ≤ 0 ↔ ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ) )
52 43 50 51 mp3an23 ( ( norm𝑤 ) ∈ ℝ → ( ( norm𝑤 ) ≤ 0 ↔ ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ) )
53 27 52 syl ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) ≤ 0 ↔ ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ) )
54 45 47 53 3bitr2rd ( 𝑤 ∈ ℋ → ( ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ↔ ( norm𝑤 ) = 0 ) )
55 norm-i ( 𝑤 ∈ ℋ → ( ( norm𝑤 ) = 0 ↔ 𝑤 = 0 ) )
56 54 55 bitrd ( 𝑤 ∈ ℋ → ( ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0 ) )
57 56 adantl ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( 2 · ( norm𝑤 ) ) ≤ ( 2 · 0 ) ↔ 𝑤 = 0 ) )
58 42 57 bitrd ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ ) → ( ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ↔ 𝑤 = 0 ) )
59 24 58 sylan2 ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ( ( ( norm𝑤 ) + ( norm ‘ ( - 1 · 𝑤 ) ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑤 + ( - 1 · 𝑤 ) ) ) ) ↔ 𝑤 = 0 ) )
60 22 59 sylibd ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → 𝑤 = 0 ) )
61 60 impancom ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑤 = 0 ) )
62 elch0 ( 𝑤 ∈ 0𝑤 = 0 )
63 61 62 syl6ibr ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑤 ∈ 0 ) )
64 63 ssrdv ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝐴𝐵 ) ⊆ 0 )
65 64 ex ( 𝑥 ∈ ℝ → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → ( 𝐴𝐵 ) ⊆ 0 ) )
66 shle0 ( ( 𝐴𝐵 ) ∈ S → ( ( 𝐴𝐵 ) ⊆ 0 ↔ ( 𝐴𝐵 ) = 0 ) )
67 23 66 ax-mp ( ( 𝐴𝐵 ) ⊆ 0 ↔ ( 𝐴𝐵 ) = 0 )
68 65 67 syl6ib ( 𝑥 ∈ ℝ → ( ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) → ( 𝐴𝐵 ) = 0 ) )
69 68 adantld ( 𝑥 ∈ ℝ → ( ( 0 < 𝑥 ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝐴𝐵 ) = 0 ) )
70 69 rexlimiv ( ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ∀ 𝑦𝐴𝑧𝐵 ( ( norm𝑦 ) + ( norm𝑧 ) ) ≤ ( 𝑥 · ( norm ‘ ( 𝑦 + 𝑧 ) ) ) ) → ( 𝐴𝐵 ) = 0 )