| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj3lem2.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | cdj3lem2.3 | ⊢ 𝑆  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 4 | 1 2 | shsvai | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐶  +ℎ  𝐷 )  →  ( 𝑥  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑥  =  ( 𝐶  +ℎ  𝐷 )  →  ( ∃ 𝑤  ∈  𝐵 𝑥  =  ( 𝑧  +ℎ  𝑤 )  ↔  ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 7 | 6 | riotabidv | ⊢ ( 𝑥  =  ( 𝐶  +ℎ  𝐷 )  →  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  =  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 8 |  | riotaex | ⊢ ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) )  ∈  V | 
						
							| 9 | 7 3 8 | fvmpt | ⊢ ( ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑆 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵 )  →  ( 𝑆 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝐷 ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑤  =  𝐷  →  ( 𝐶  +ℎ  𝑤 )  =  ( 𝐶  +ℎ  𝐷 ) ) | 
						
							| 14 | 13 | rspceeqv | ⊢ ( ( 𝐷  ∈  𝐵  ∧  ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝐷 ) )  →  ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 ) ) | 
						
							| 15 | 12 14 | mpan2 | ⊢ ( 𝐷  ∈  𝐵  →  ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 ) ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 ) ) | 
						
							| 17 |  | simp1 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  𝐶  ∈  𝐴 ) | 
						
							| 18 | 1 2 | cdjreui | ⊢ ( ( ( 𝐶  +ℎ  𝐷 )  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∃! 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 19 | 4 18 | stoic3 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∃! 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑧  =  𝐶  →  ( 𝑧  +ℎ  𝑤 )  =  ( 𝐶  +ℎ  𝑤 ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 ) ) ) | 
						
							| 22 | 21 | rexbidv | ⊢ ( 𝑧  =  𝐶  →  ( ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 )  ↔  ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 ) ) ) | 
						
							| 23 | 22 | riota2 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ∃! 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 )  ↔  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) )  =  𝐶 ) ) | 
						
							| 24 | 17 19 23 | syl2anc | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝐶  +ℎ  𝑤 )  ↔  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) )  =  𝐶 ) ) | 
						
							| 25 | 16 24 | mpbid | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( 𝐶  +ℎ  𝐷 )  =  ( 𝑧  +ℎ  𝑤 ) )  =  𝐶 ) | 
						
							| 26 | 11 25 | eqtrd | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  𝐶 ) |