Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj3lem2.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
cdj3lem2.3 |
⊢ 𝑆 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
4 |
1 2
|
shsvai |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐶 +ℎ 𝐷 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) ↔ ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑥 = ( 𝐶 +ℎ 𝐷 ) → ( ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
7 |
6
|
riotabidv |
⊢ ( 𝑥 = ( 𝐶 +ℎ 𝐷 ) → ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) = ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
8 |
|
riotaex |
⊢ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ∈ V |
9 |
7 3 8
|
fvmpt |
⊢ ( ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑆 ‘ ( 𝐶 +ℎ 𝐷 ) ) = ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
10 |
4 9
|
syl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝑆 ‘ ( 𝐶 +ℎ 𝐷 ) ) = ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝐶 +ℎ 𝐷 ) ) = ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) ) |
12 |
|
eqid |
⊢ ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝐷 ) |
13 |
|
oveq2 |
⊢ ( 𝑤 = 𝐷 → ( 𝐶 +ℎ 𝑤 ) = ( 𝐶 +ℎ 𝐷 ) ) |
14 |
13
|
rspceeqv |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝐷 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ) |
15 |
12 14
|
mpan2 |
⊢ ( 𝐷 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ) |
17 |
|
simp1 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐶 ∈ 𝐴 ) |
18 |
1 2
|
cdjreui |
⊢ ( ( ( 𝐶 +ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∃! 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) |
19 |
4 18
|
stoic3 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∃! 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 +ℎ 𝑤 ) = ( 𝐶 +ℎ 𝑤 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ↔ ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ) ) |
23 |
22
|
riota2 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃! 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ↔ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) = 𝐶 ) ) |
24 |
17 19 23
|
syl2anc |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝐶 +ℎ 𝑤 ) ↔ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) = 𝐶 ) ) |
25 |
16 24
|
mpbid |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( 𝐶 +ℎ 𝐷 ) = ( 𝑧 +ℎ 𝑤 ) ) = 𝐶 ) |
26 |
11 25
|
eqtrd |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝐶 +ℎ 𝐷 ) ) = 𝐶 ) |