Metamath Proof Explorer


Theorem cdj3lem2

Description: Lemma for cdj3i . Value of the first-component function S . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑧𝐴𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ) )
Assertion cdj3lem2 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝐶 + 𝐷 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 𝐴S
2 cdj3lem2.2 𝐵S
3 cdj3lem2.3 𝑆 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑧𝐴𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ) )
4 1 2 shsvai ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) )
5 eqeq1 ( 𝑥 = ( 𝐶 + 𝐷 ) → ( 𝑥 = ( 𝑧 + 𝑤 ) ↔ ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
6 5 rexbidv ( 𝑥 = ( 𝐶 + 𝐷 ) → ( ∃ 𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ↔ ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
7 6 riotabidv ( 𝑥 = ( 𝐶 + 𝐷 ) → ( 𝑧𝐴𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ) = ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
8 riotaex ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) ∈ V
9 7 3 8 fvmpt ( ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) → ( 𝑆 ‘ ( 𝐶 + 𝐷 ) ) = ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
10 4 9 syl ( ( 𝐶𝐴𝐷𝐵 ) → ( 𝑆 ‘ ( 𝐶 + 𝐷 ) ) = ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
11 10 3adant3 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝐶 + 𝐷 ) ) = ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) )
12 eqid ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝐷 )
13 oveq2 ( 𝑤 = 𝐷 → ( 𝐶 + 𝑤 ) = ( 𝐶 + 𝐷 ) )
14 13 rspceeqv ( ( 𝐷𝐵 ∧ ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝐷 ) ) → ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) )
15 12 14 mpan2 ( 𝐷𝐵 → ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) )
16 15 3ad2ant2 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) )
17 simp1 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → 𝐶𝐴 )
18 1 2 cdjreui ( ( ( 𝐶 + 𝐷 ) ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ∃! 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) )
19 4 18 stoic3 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ∃! 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) )
20 oveq1 ( 𝑧 = 𝐶 → ( 𝑧 + 𝑤 ) = ( 𝐶 + 𝑤 ) )
21 20 eqeq2d ( 𝑧 = 𝐶 → ( ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ↔ ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) ) )
22 21 rexbidv ( 𝑧 = 𝐶 → ( ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ↔ ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) ) )
23 22 riota2 ( ( 𝐶𝐴 ∧ ∃! 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) → ( ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) ↔ ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) = 𝐶 ) )
24 17 19 23 syl2anc ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( ∃ 𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝐶 + 𝑤 ) ↔ ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) = 𝐶 ) )
25 16 24 mpbid ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑧𝐴𝑤𝐵 ( 𝐶 + 𝐷 ) = ( 𝑧 + 𝑤 ) ) = 𝐶 )
26 11 25 eqtrd ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝐶 + 𝐷 ) ) = 𝐶 )