Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj3.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
cdj3.3 |
⊢ 𝑆 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
4 |
|
cdj3.4 |
⊢ 𝑇 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
5 |
|
cdj3.5 |
⊢ ( 𝜑 ↔ ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
6 |
|
cdj3.6 |
⊢ ( 𝜓 ↔ ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
7 |
1 2
|
cdj3lem1 |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |
8 |
1 2 3
|
cdj3lem2b |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
9 |
8 5
|
sylibr |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → 𝜑 ) |
10 |
1 2 4
|
cdj3lem3b |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
11 |
10 6
|
sylibr |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → 𝜓 ) |
12 |
7 9 11
|
3jca |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝜑 ∧ 𝜓 ) ) |
13 |
|
breq2 |
⊢ ( 𝑣 = 𝑓 → ( 0 < 𝑣 ↔ 0 < 𝑓 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑣 = 𝑓 → ( 𝑣 · ( normℎ ‘ 𝑢 ) ) = ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑣 = 𝑓 → ( ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑣 = 𝑓 → ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( 𝑣 = 𝑓 → ( ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
18 |
17
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ∃ 𝑓 ∈ ℝ ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ) |
19 |
5 18
|
bitri |
⊢ ( 𝜑 ↔ ∃ 𝑓 ∈ ℝ ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ) |
20 |
|
breq2 |
⊢ ( 𝑣 = 𝑔 → ( 0 < 𝑣 ↔ 0 < 𝑔 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑣 = 𝑔 → ( 𝑣 · ( normℎ ‘ 𝑢 ) ) = ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑣 = 𝑔 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑣 = 𝑔 → ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑣 = 𝑔 → ( ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ∃ 𝑔 ∈ ℝ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) |
26 |
6 25
|
bitri |
⊢ ( 𝜓 ↔ ∃ 𝑔 ∈ ℝ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) |
27 |
19 26
|
anbi12i |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑓 ∈ ℝ ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ∃ 𝑔 ∈ ℝ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
28 |
|
reeanv |
⊢ ( ∃ 𝑓 ∈ ℝ ∃ 𝑔 ∈ ℝ ( ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ↔ ( ∃ 𝑓 ∈ ℝ ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ∃ 𝑔 ∈ ℝ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
29 |
27 28
|
bitr4i |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑓 ∈ ℝ ∃ 𝑔 ∈ ℝ ( ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
30 |
|
an4 |
⊢ ( ( ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ↔ ( ( 0 < 𝑓 ∧ 0 < 𝑔 ) ∧ ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
31 |
|
addgt0 |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 0 < 𝑓 ∧ 0 < 𝑔 ) ) → 0 < ( 𝑓 + 𝑔 ) ) |
32 |
31
|
ex |
⊢ ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) → ( ( 0 < 𝑓 ∧ 0 < 𝑔 ) → 0 < ( 𝑓 + 𝑔 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) → ( ( 0 < 𝑓 ∧ 0 < 𝑔 ) → 0 < ( 𝑓 + 𝑔 ) ) ) |
34 |
1 2
|
shsvai |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑡 +ℎ ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
35 |
|
2fveq3 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ 𝑢 ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( 𝑓 · ( normℎ ‘ 𝑢 ) ) = ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
38 |
35 37
|
breq12d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ↔ ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
39 |
38
|
rspcv |
⊢ ( ( 𝑡 +ℎ ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
41 |
36
|
oveq2d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( 𝑔 · ( normℎ ‘ 𝑢 ) ) = ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
42 |
40 41
|
breq12d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
43 |
42
|
rspcv |
⊢ ( ( 𝑡 +ℎ ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) → ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
44 |
39 43
|
anim12d |
⊢ ( ( 𝑡 +ℎ ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) → ( ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
45 |
34 44
|
syl |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
47 |
1
|
sheli |
⊢ ( 𝑡 ∈ 𝐴 → 𝑡 ∈ ℋ ) |
48 |
|
normcl |
⊢ ( 𝑡 ∈ ℋ → ( normℎ ‘ 𝑡 ) ∈ ℝ ) |
49 |
47 48
|
syl |
⊢ ( 𝑡 ∈ 𝐴 → ( normℎ ‘ 𝑡 ) ∈ ℝ ) |
50 |
2
|
sheli |
⊢ ( ℎ ∈ 𝐵 → ℎ ∈ ℋ ) |
51 |
|
normcl |
⊢ ( ℎ ∈ ℋ → ( normℎ ‘ ℎ ) ∈ ℝ ) |
52 |
50 51
|
syl |
⊢ ( ℎ ∈ 𝐵 → ( normℎ ‘ ℎ ) ∈ ℝ ) |
53 |
49 52
|
anim12i |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( normℎ ‘ ℎ ) ∈ ℝ ) ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( normℎ ‘ ℎ ) ∈ ℝ ) ) |
55 |
|
hvaddcl |
⊢ ( ( 𝑡 ∈ ℋ ∧ ℎ ∈ ℋ ) → ( 𝑡 +ℎ ℎ ) ∈ ℋ ) |
56 |
47 50 55
|
syl2an |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑡 +ℎ ℎ ) ∈ ℋ ) |
57 |
|
normcl |
⊢ ( ( 𝑡 +ℎ ℎ ) ∈ ℋ → ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) |
58 |
56 57
|
syl |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) |
59 |
|
remulcl |
⊢ ( ( 𝑓 ∈ ℝ ∧ ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) → ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
60 |
58 59
|
sylan2 |
⊢ ( ( 𝑓 ∈ ℝ ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
62 |
|
remulcl |
⊢ ( ( 𝑔 ∈ ℝ ∧ ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) → ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
63 |
58 62
|
sylan2 |
⊢ ( ( 𝑔 ∈ ℝ ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
64 |
63
|
adantll |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
65 |
|
le2add |
⊢ ( ( ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( normℎ ‘ ℎ ) ∈ ℝ ) ∧ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ∧ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) ) → ( ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
66 |
54 61 64 65
|
syl12anc |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
67 |
66
|
adantll |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
68 |
1 2 3
|
cdj3lem2 |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) = 𝑡 ) |
69 |
68
|
fveq2d |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( normℎ ‘ 𝑡 ) ) |
70 |
69
|
breq1d |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
71 |
1 2 4
|
cdj3lem3 |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) = ℎ ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( normℎ ‘ ℎ ) ) |
73 |
72
|
breq1d |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
74 |
70 73
|
anbi12d |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
75 |
74
|
3expa |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
76 |
75
|
ancoms |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
77 |
76
|
adantlr |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ℎ ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
78 |
|
recn |
⊢ ( 𝑓 ∈ ℝ → 𝑓 ∈ ℂ ) |
79 |
|
recn |
⊢ ( 𝑔 ∈ ℝ → 𝑔 ∈ ℂ ) |
80 |
58
|
recnd |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℂ ) |
81 |
|
adddir |
⊢ ( ( 𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℂ ) → ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
82 |
78 79 80 81
|
syl3an |
⊢ ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
83 |
82
|
3expa |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
84 |
83
|
breq2d |
⊢ ( ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
85 |
84
|
adantll |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) + ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
86 |
67 77 85
|
3imtr4d |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑓 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑔 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
87 |
46 86
|
syld |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
88 |
87
|
ralrimdvva |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) → ( ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) → ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
89 |
|
readdcl |
⊢ ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) → ( 𝑓 + 𝑔 ) ∈ ℝ ) |
90 |
|
breq2 |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( 0 < 𝑣 ↔ 0 < ( 𝑓 + 𝑔 ) ) ) |
91 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑡 ) ) |
92 |
91
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ) |
93 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) |
95 |
92 94
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) ) |
96 |
|
fveq2 |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ℎ ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
98 |
|
oveq2 |
⊢ ( 𝑦 = ℎ → ( 𝑡 +ℎ 𝑦 ) = ( 𝑡 +ℎ ℎ ) ) |
99 |
98
|
fveq2d |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
100 |
99
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
101 |
97 100
|
breq12d |
⊢ ( 𝑦 = ℎ → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
102 |
95 101
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
103 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
104 |
103
|
breq2d |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
105 |
104
|
2ralbidv |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
106 |
102 105
|
syl5bb |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
107 |
90 106
|
anbi12d |
⊢ ( 𝑣 = ( 𝑓 + 𝑔 ) → ( ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ↔ ( 0 < ( 𝑓 + 𝑔 ) ∧ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) ) |
108 |
107
|
rspcev |
⊢ ( ( ( 𝑓 + 𝑔 ) ∈ ℝ ∧ ( 0 < ( 𝑓 + 𝑔 ) ∧ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) |
109 |
108
|
ex |
⊢ ( ( 𝑓 + 𝑔 ) ∈ ℝ → ( ( 0 < ( 𝑓 + 𝑔 ) ∧ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
110 |
89 109
|
syl |
⊢ ( ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) → ( ( 0 < ( 𝑓 + 𝑔 ) ∧ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
111 |
110
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) → ( ( 0 < ( 𝑓 + 𝑔 ) ∧ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( ( 𝑓 + 𝑔 ) · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
112 |
33 88 111
|
syl2and |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) → ( ( ( 0 < 𝑓 ∧ 0 < 𝑔 ) ∧ ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
113 |
30 112
|
syl5bi |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ ( 𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ) ) → ( ( ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
114 |
113
|
rexlimdvva |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( ∃ 𝑓 ∈ ℝ ∃ 𝑔 ∈ ℝ ( ( 0 < 𝑓 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑓 · ( normℎ ‘ 𝑢 ) ) ) ∧ ( 0 < 𝑔 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑔 · ( normℎ ‘ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
115 |
29 114
|
syl5bi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) ) |
116 |
115
|
3impib |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) |
117 |
12 116
|
impbii |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ↔ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝜑 ∧ 𝜓 ) ) |