| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj3.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | cdj3.3 | ⊢ 𝑆  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 4 |  | cdj3.4 | ⊢ 𝑇  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 5 |  | cdj3.5 | ⊢ ( 𝜑  ↔  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 6 |  | cdj3.6 | ⊢ ( 𝜓  ↔  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 7 | 1 2 | cdj3lem1 | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ( 𝐴  ∩  𝐵 )  =  0ℋ ) | 
						
							| 8 | 1 2 3 | cdj3lem2b | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 9 | 8 5 | sylibr | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  𝜑 ) | 
						
							| 10 | 1 2 4 | cdj3lem3b | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 11 | 10 6 | sylibr | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  𝜓 ) | 
						
							| 12 | 7 9 11 | 3jca | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  𝜑  ∧  𝜓 ) ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑣  =  𝑓  →  ( 0  <  𝑣  ↔  0  <  𝑓 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑣  =  𝑓  →  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  =  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑣  =  𝑓  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  ↔  ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑣  =  𝑓  →  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  ↔  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 17 | 13 16 | anbi12d | ⊢ ( 𝑣  =  𝑓  →  ( ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 18 | 17 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ∃ 𝑓  ∈  ℝ ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 19 | 5 18 | bitri | ⊢ ( 𝜑  ↔  ∃ 𝑓  ∈  ℝ ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑣  =  𝑔  →  ( 0  <  𝑣  ↔  0  <  𝑔 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑣  =  𝑔  →  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  =  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( 𝑣  =  𝑔  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  ↔  ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( 𝑣  =  𝑔  →  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  ↔  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 24 | 20 23 | anbi12d | ⊢ ( 𝑣  =  𝑔  →  ( ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ∃ 𝑔  ∈  ℝ ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 26 | 6 25 | bitri | ⊢ ( 𝜓  ↔  ∃ 𝑔  ∈  ℝ ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 27 | 19 26 | anbi12i | ⊢ ( ( 𝜑  ∧  𝜓 )  ↔  ( ∃ 𝑓  ∈  ℝ ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ∃ 𝑔  ∈  ℝ ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 28 |  | reeanv | ⊢ ( ∃ 𝑓  ∈  ℝ ∃ 𝑔  ∈  ℝ ( ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) )  ↔  ( ∃ 𝑓  ∈  ℝ ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ∃ 𝑔  ∈  ℝ ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 29 | 27 28 | bitr4i | ⊢ ( ( 𝜑  ∧  𝜓 )  ↔  ∃ 𝑓  ∈  ℝ ∃ 𝑔  ∈  ℝ ( ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 30 |  | an4 | ⊢ ( ( ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) )  ↔  ( ( 0  <  𝑓  ∧  0  <  𝑔 )  ∧  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) ) ) | 
						
							| 31 |  | addgt0 | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 0  <  𝑓  ∧  0  <  𝑔 ) )  →  0  <  ( 𝑓  +  𝑔 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  →  ( ( 0  <  𝑓  ∧  0  <  𝑔 )  →  0  <  ( 𝑓  +  𝑔 ) ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  →  ( ( 0  <  𝑓  ∧  0  <  𝑔 )  →  0  <  ( 𝑓  +  𝑔 ) ) ) | 
						
							| 34 | 1 2 | shsvai | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑡  +ℎ  ℎ )  ∈  ( 𝐴  +ℋ  𝐵 ) ) | 
						
							| 35 |  | 2fveq3 | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  =  ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( normℎ ‘ 𝑢 )  =  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  =  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 38 | 35 37 | breq12d | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ↔  ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 39 | 38 | rspcv | ⊢ ( ( 𝑡  +ℎ  ℎ )  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 40 |  | 2fveq3 | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  =  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 41 | 36 | oveq2d | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) )  =  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 42 | 40 41 | breq12d | ⊢ ( 𝑢  =  ( 𝑡  +ℎ  ℎ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) )  ↔  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 43 | 42 | rspcv | ⊢ ( ( 𝑡  +ℎ  ℎ )  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) )  →  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 44 | 39 43 | anim12d | ⊢ ( ( 𝑡  +ℎ  ℎ )  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 45 | 34 44 | syl | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 47 | 1 | sheli | ⊢ ( 𝑡  ∈  𝐴  →  𝑡  ∈   ℋ ) | 
						
							| 48 |  | normcl | ⊢ ( 𝑡  ∈   ℋ  →  ( normℎ ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑡  ∈  𝐴  →  ( normℎ ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 50 | 2 | sheli | ⊢ ( ℎ  ∈  𝐵  →  ℎ  ∈   ℋ ) | 
						
							| 51 |  | normcl | ⊢ ( ℎ  ∈   ℋ  →  ( normℎ ‘ ℎ )  ∈  ℝ ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ℎ  ∈  𝐵  →  ( normℎ ‘ ℎ )  ∈  ℝ ) | 
						
							| 53 | 49 52 | anim12i | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( ( normℎ ‘ 𝑡 )  ∈  ℝ  ∧  ( normℎ ‘ ℎ )  ∈  ℝ ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( normℎ ‘ 𝑡 )  ∈  ℝ  ∧  ( normℎ ‘ ℎ )  ∈  ℝ ) ) | 
						
							| 55 |  | hvaddcl | ⊢ ( ( 𝑡  ∈   ℋ  ∧  ℎ  ∈   ℋ )  →  ( 𝑡  +ℎ  ℎ )  ∈   ℋ ) | 
						
							| 56 | 47 50 55 | syl2an | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( 𝑡  +ℎ  ℎ )  ∈   ℋ ) | 
						
							| 57 |  | normcl | ⊢ ( ( 𝑡  +ℎ  ℎ )  ∈   ℋ  →  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℝ ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℝ ) | 
						
							| 59 |  | remulcl | ⊢ ( ( 𝑓  ∈  ℝ  ∧  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℝ )  →  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 60 | 58 59 | sylan2 | ⊢ ( ( 𝑓  ∈  ℝ  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 62 |  | remulcl | ⊢ ( ( 𝑔  ∈  ℝ  ∧  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℝ )  →  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 63 | 58 62 | sylan2 | ⊢ ( ( 𝑔  ∈  ℝ  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 64 | 63 | adantll | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) | 
						
							| 65 |  | le2add | ⊢ ( ( ( ( normℎ ‘ 𝑡 )  ∈  ℝ  ∧  ( normℎ ‘ ℎ )  ∈  ℝ )  ∧  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ  ∧  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∈  ℝ ) )  →  ( ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 66 | 54 61 64 65 | syl12anc | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 67 | 66 | adantll | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 68 | 1 2 3 | cdj3lem2 | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) )  =  𝑡 ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( normℎ ‘ 𝑡 ) ) | 
						
							| 70 | 69 | breq1d | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 71 | 1 2 4 | cdj3lem3 | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) )  =  ℎ ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( normℎ ‘ ℎ ) ) | 
						
							| 73 | 72 | breq1d | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 74 | 70 73 | anbi12d | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 75 | 74 | 3expa | ⊢ ( ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 76 | 75 | ancoms | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 77 | 76 | adantlr | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ℎ )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 78 |  | recn | ⊢ ( 𝑓  ∈  ℝ  →  𝑓  ∈  ℂ ) | 
						
							| 79 |  | recn | ⊢ ( 𝑔  ∈  ℝ  →  𝑔  ∈  ℂ ) | 
						
							| 80 | 58 | recnd | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℂ ) | 
						
							| 81 |  | adddir | ⊢ ( ( 𝑓  ∈  ℂ  ∧  𝑔  ∈  ℂ  ∧  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) )  ∈  ℂ )  →  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 82 | 78 79 80 81 | syl3an | ⊢ ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 83 | 82 | 3expa | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 84 | 83 | breq2d | ⊢ ( ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 85 | 84 | adantll | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  +  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 86 | 67 77 85 | 3imtr4d | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑓  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ ( 𝑡  +ℎ  ℎ ) ) )  ≤  ( 𝑔  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 87 | 46 86 | syld | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) )  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 88 | 87 | ralrimdvva | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  →  ( ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) )  →  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 89 |  | readdcl | ⊢ ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  →  ( 𝑓  +  𝑔 )  ∈  ℝ ) | 
						
							| 90 |  | breq2 | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( 0  <  𝑣  ↔  0  <  ( 𝑓  +  𝑔 ) ) ) | 
						
							| 91 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( normℎ ‘ 𝑥 )  =  ( normℎ ‘ 𝑡 ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 93 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑡  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝑥  =  𝑡  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) ) | 
						
							| 95 | 92 94 | breq12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑦  =  ℎ  →  ( normℎ ‘ 𝑦 )  =  ( normℎ ‘ ℎ ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( 𝑦  =  ℎ  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) ) ) | 
						
							| 98 |  | oveq2 | ⊢ ( 𝑦  =  ℎ  →  ( 𝑡  +ℎ  𝑦 )  =  ( 𝑡  +ℎ  ℎ ) ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( 𝑦  =  ℎ  →  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( 𝑦  =  ℎ  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 101 | 97 100 | breq12d | ⊢ ( 𝑦  =  ℎ  →  ( ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 102 | 95 101 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 103 |  | oveq1 | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  =  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 104 | 103 | breq2d | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 105 | 104 | 2ralbidv | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 106 | 102 105 | bitrid | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 107 | 90 106 | anbi12d | ⊢ ( 𝑣  =  ( 𝑓  +  𝑔 )  →  ( ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  ↔  ( 0  <  ( 𝑓  +  𝑔 )  ∧  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) ) | 
						
							| 108 | 107 | rspcev | ⊢ ( ( ( 𝑓  +  𝑔 )  ∈  ℝ  ∧  ( 0  <  ( 𝑓  +  𝑔 )  ∧  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 109 | 108 | ex | ⊢ ( ( 𝑓  +  𝑔 )  ∈  ℝ  →  ( ( 0  <  ( 𝑓  +  𝑔 )  ∧  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 110 | 89 109 | syl | ⊢ ( ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ )  →  ( ( 0  <  ( 𝑓  +  𝑔 )  ∧  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  →  ( ( 0  <  ( 𝑓  +  𝑔 )  ∧  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( ( 𝑓  +  𝑔 )  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 112 | 33 88 111 | syl2and | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  →  ( ( ( 0  <  𝑓  ∧  0  <  𝑔 )  ∧  ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) )  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 113 | 30 112 | biimtrid | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  ( 𝑓  ∈  ℝ  ∧  𝑔  ∈  ℝ ) )  →  ( ( ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 114 | 113 | rexlimdvva | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ∃ 𝑓  ∈  ℝ ∃ 𝑔  ∈  ℝ ( ( 0  <  𝑓  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) )  ≤  ( 𝑓  ·  ( normℎ ‘ 𝑢 ) ) )  ∧  ( 0  <  𝑔  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑔  ·  ( normℎ ‘ 𝑢 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 115 | 29 114 | biimtrid | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) ) | 
						
							| 116 | 115 | 3impib | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  𝜑  ∧  𝜓 )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 117 | 12 116 | impbii | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  ↔  ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ∧  𝜑  ∧  𝜓 ) ) |