| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj3lem2.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | cdj3lem3.3 | ⊢ 𝑇  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 4 |  | incom | ⊢ ( 𝐴  ∩  𝐵 )  =  ( 𝐵  ∩  𝐴 ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ↔  ( 𝐵  ∩  𝐴 )  =  0ℋ ) | 
						
							| 6 | 2 | sheli | ⊢ ( 𝐷  ∈  𝐵  →  𝐷  ∈   ℋ ) | 
						
							| 7 | 1 | sheli | ⊢ ( 𝐶  ∈  𝐴  →  𝐶  ∈   ℋ ) | 
						
							| 8 |  | ax-hvcom | ⊢ ( ( 𝐷  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐷  +ℎ  𝐶 )  =  ( 𝐶  +ℎ  𝐷 ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴 )  →  ( 𝐷  +ℎ  𝐶 )  =  ( 𝐶  +ℎ  𝐷 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴 )  →  ( 𝑇 ‘ ( 𝐷  +ℎ  𝐶 ) )  =  ( 𝑇 ‘ ( 𝐶  +ℎ  𝐷 ) ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴  ∧  ( 𝐵  ∩  𝐴 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝐷  +ℎ  𝐶 ) )  =  ( 𝑇 ‘ ( 𝐶  +ℎ  𝐷 ) ) ) | 
						
							| 12 | 2 1 | shscomi | ⊢ ( 𝐵  +ℋ  𝐴 )  =  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 13 | 2 | sheli | ⊢ ( 𝑤  ∈  𝐵  →  𝑤  ∈   ℋ ) | 
						
							| 14 | 1 | sheli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈   ℋ ) | 
						
							| 15 |  | ax-hvcom | ⊢ ( ( 𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑤  +ℎ  𝑧 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝑤  +ℎ  𝑧 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  =  ( 𝑤  +ℎ  𝑧 )  ↔  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 18 | 17 | rexbidva | ⊢ ( 𝑤  ∈  𝐵  →  ( ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 )  ↔  ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 19 | 18 | riotabiia | ⊢ ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) )  =  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 20 | 12 19 | mpteq12i | ⊢ ( 𝑥  ∈  ( 𝐵  +ℋ  𝐴 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) ) )  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 21 | 3 20 | eqtr4i | ⊢ 𝑇  =  ( 𝑥  ∈  ( 𝐵  +ℋ  𝐴 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) ) ) | 
						
							| 22 | 2 1 21 | cdj3lem2 | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴  ∧  ( 𝐵  ∩  𝐴 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝐷  +ℎ  𝐶 ) )  =  𝐷 ) | 
						
							| 23 | 11 22 | eqtr3d | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴  ∧  ( 𝐵  ∩  𝐴 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  𝐷 ) | 
						
							| 24 | 5 23 | syl3an3b | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝐶  ∈  𝐴  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  𝐷 ) | 
						
							| 25 | 24 | 3com12 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑇 ‘ ( 𝐶  +ℎ  𝐷 ) )  =  𝐷 ) |