Metamath Proof Explorer


Theorem cdj3lem3

Description: Lemma for cdj3i . Value of the second-component function T . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑧 + 𝑤 ) ) )
Assertion cdj3lem3 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 𝐴S
2 cdj3lem2.2 𝐵S
3 cdj3lem3.3 𝑇 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑧 + 𝑤 ) ) )
4 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
5 4 eqeq1i ( ( 𝐴𝐵 ) = 0 ↔ ( 𝐵𝐴 ) = 0 )
6 2 sheli ( 𝐷𝐵𝐷 ∈ ℋ )
7 1 sheli ( 𝐶𝐴𝐶 ∈ ℋ )
8 ax-hvcom ( ( 𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) )
9 6 7 8 syl2an ( ( 𝐷𝐵𝐶𝐴 ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) )
10 9 fveq2d ( ( 𝐷𝐵𝐶𝐴 ) → ( 𝑇 ‘ ( 𝐷 + 𝐶 ) ) = ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) )
11 10 3adant3 ( ( 𝐷𝐵𝐶𝐴 ∧ ( 𝐵𝐴 ) = 0 ) → ( 𝑇 ‘ ( 𝐷 + 𝐶 ) ) = ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) )
12 2 1 shscomi ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 )
13 2 sheli ( 𝑤𝐵𝑤 ∈ ℋ )
14 1 sheli ( 𝑧𝐴𝑧 ∈ ℋ )
15 ax-hvcom ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑤 + 𝑧 ) = ( 𝑧 + 𝑤 ) )
16 13 14 15 syl2an ( ( 𝑤𝐵𝑧𝐴 ) → ( 𝑤 + 𝑧 ) = ( 𝑧 + 𝑤 ) )
17 16 eqeq2d ( ( 𝑤𝐵𝑧𝐴 ) → ( 𝑥 = ( 𝑤 + 𝑧 ) ↔ 𝑥 = ( 𝑧 + 𝑤 ) ) )
18 17 rexbidva ( 𝑤𝐵 → ( ∃ 𝑧𝐴 𝑥 = ( 𝑤 + 𝑧 ) ↔ ∃ 𝑧𝐴 𝑥 = ( 𝑧 + 𝑤 ) ) )
19 18 riotabiia ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑤 + 𝑧 ) ) = ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑧 + 𝑤 ) )
20 12 19 mpteq12i ( 𝑥 ∈ ( 𝐵 + 𝐴 ) ↦ ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑤 + 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑧 + 𝑤 ) ) )
21 3 20 eqtr4i 𝑇 = ( 𝑥 ∈ ( 𝐵 + 𝐴 ) ↦ ( 𝑤𝐵𝑧𝐴 𝑥 = ( 𝑤 + 𝑧 ) ) )
22 2 1 21 cdj3lem2 ( ( 𝐷𝐵𝐶𝐴 ∧ ( 𝐵𝐴 ) = 0 ) → ( 𝑇 ‘ ( 𝐷 + 𝐶 ) ) = 𝐷 )
23 11 22 eqtr3d ( ( 𝐷𝐵𝐶𝐴 ∧ ( 𝐵𝐴 ) = 0 ) → ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) = 𝐷 )
24 5 23 syl3an3b ( ( 𝐷𝐵𝐶𝐴 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) = 𝐷 )
25 24 3com12 ( ( 𝐶𝐴𝐷𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑇 ‘ ( 𝐶 + 𝐷 ) ) = 𝐷 )