Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj3lem2.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
cdj3lem3.3 |
⊢ 𝑇 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
4 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
5 |
4
|
eqeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) |
6 |
2
|
sheli |
⊢ ( 𝐷 ∈ 𝐵 → 𝐷 ∈ ℋ ) |
7 |
1
|
sheli |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ ℋ ) |
8 |
|
ax-hvcom |
⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐷 +ℎ 𝐶 ) = ( 𝐶 +ℎ 𝐷 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 +ℎ 𝐶 ) = ( 𝐶 +ℎ 𝐷 ) ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝐷 +ℎ 𝐶 ) ) = ( 𝑇 ‘ ( 𝐶 +ℎ 𝐷 ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝐷 +ℎ 𝐶 ) ) = ( 𝑇 ‘ ( 𝐶 +ℎ 𝐷 ) ) ) |
12 |
2 1
|
shscomi |
⊢ ( 𝐵 +ℋ 𝐴 ) = ( 𝐴 +ℋ 𝐵 ) |
13 |
2
|
sheli |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ ) |
14 |
1
|
sheli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ ) |
15 |
|
ax-hvcom |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑤 ) ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑤 ) ) |
17 |
16
|
eqeq2d |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 = ( 𝑤 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
18 |
17
|
rexbidva |
⊢ ( 𝑤 ∈ 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
19 |
18
|
riotabiia |
⊢ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) = ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) |
20 |
12 19
|
mpteq12i |
⊢ ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
21 |
3 20
|
eqtr4i |
⊢ 𝑇 = ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) ) |
22 |
2 1 21
|
cdj3lem2 |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝐷 +ℎ 𝐶 ) ) = 𝐷 ) |
23 |
11 22
|
eqtr3d |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝐶 +ℎ 𝐷 ) ) = 𝐷 ) |
24 |
5 23
|
syl3an3b |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝐶 +ℎ 𝐷 ) ) = 𝐷 ) |
25 |
24
|
3com12 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑇 ‘ ( 𝐶 +ℎ 𝐷 ) ) = 𝐷 ) |