| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdj3lem2.1 |
|- A e. SH |
| 2 |
|
cdj3lem2.2 |
|- B e. SH |
| 3 |
|
cdj3lem3.3 |
|- T = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) ) |
| 4 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 5 |
4
|
eqeq1i |
|- ( ( A i^i B ) = 0H <-> ( B i^i A ) = 0H ) |
| 6 |
2
|
sheli |
|- ( D e. B -> D e. ~H ) |
| 7 |
1
|
sheli |
|- ( C e. A -> C e. ~H ) |
| 8 |
|
ax-hvcom |
|- ( ( D e. ~H /\ C e. ~H ) -> ( D +h C ) = ( C +h D ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( D e. B /\ C e. A ) -> ( D +h C ) = ( C +h D ) ) |
| 10 |
9
|
fveq2d |
|- ( ( D e. B /\ C e. A ) -> ( T ` ( D +h C ) ) = ( T ` ( C +h D ) ) ) |
| 11 |
10
|
3adant3 |
|- ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( D +h C ) ) = ( T ` ( C +h D ) ) ) |
| 12 |
2 1
|
shscomi |
|- ( B +H A ) = ( A +H B ) |
| 13 |
2
|
sheli |
|- ( w e. B -> w e. ~H ) |
| 14 |
1
|
sheli |
|- ( z e. A -> z e. ~H ) |
| 15 |
|
ax-hvcom |
|- ( ( w e. ~H /\ z e. ~H ) -> ( w +h z ) = ( z +h w ) ) |
| 16 |
13 14 15
|
syl2an |
|- ( ( w e. B /\ z e. A ) -> ( w +h z ) = ( z +h w ) ) |
| 17 |
16
|
eqeq2d |
|- ( ( w e. B /\ z e. A ) -> ( x = ( w +h z ) <-> x = ( z +h w ) ) ) |
| 18 |
17
|
rexbidva |
|- ( w e. B -> ( E. z e. A x = ( w +h z ) <-> E. z e. A x = ( z +h w ) ) ) |
| 19 |
18
|
riotabiia |
|- ( iota_ w e. B E. z e. A x = ( w +h z ) ) = ( iota_ w e. B E. z e. A x = ( z +h w ) ) |
| 20 |
12 19
|
mpteq12i |
|- ( x e. ( B +H A ) |-> ( iota_ w e. B E. z e. A x = ( w +h z ) ) ) = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) ) |
| 21 |
3 20
|
eqtr4i |
|- T = ( x e. ( B +H A ) |-> ( iota_ w e. B E. z e. A x = ( w +h z ) ) ) |
| 22 |
2 1 21
|
cdj3lem2 |
|- ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( D +h C ) ) = D ) |
| 23 |
11 22
|
eqtr3d |
|- ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( C +h D ) ) = D ) |
| 24 |
5 23
|
syl3an3b |
|- ( ( D e. B /\ C e. A /\ ( A i^i B ) = 0H ) -> ( T ` ( C +h D ) ) = D ) |
| 25 |
24
|
3com12 |
|- ( ( C e. A /\ D e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( C +h D ) ) = D ) |