| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 |  |-  A e. SH | 
						
							| 2 |  | cdj3lem2.2 |  |-  B e. SH | 
						
							| 3 |  | cdj3lem3.3 |  |-  T = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) ) | 
						
							| 4 |  | incom |  |-  ( A i^i B ) = ( B i^i A ) | 
						
							| 5 | 4 | eqeq1i |  |-  ( ( A i^i B ) = 0H <-> ( B i^i A ) = 0H ) | 
						
							| 6 | 2 | sheli |  |-  ( D e. B -> D e. ~H ) | 
						
							| 7 | 1 | sheli |  |-  ( C e. A -> C e. ~H ) | 
						
							| 8 |  | ax-hvcom |  |-  ( ( D e. ~H /\ C e. ~H ) -> ( D +h C ) = ( C +h D ) ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( D e. B /\ C e. A ) -> ( D +h C ) = ( C +h D ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( D e. B /\ C e. A ) -> ( T ` ( D +h C ) ) = ( T ` ( C +h D ) ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( D +h C ) ) = ( T ` ( C +h D ) ) ) | 
						
							| 12 | 2 1 | shscomi |  |-  ( B +H A ) = ( A +H B ) | 
						
							| 13 | 2 | sheli |  |-  ( w e. B -> w e. ~H ) | 
						
							| 14 | 1 | sheli |  |-  ( z e. A -> z e. ~H ) | 
						
							| 15 |  | ax-hvcom |  |-  ( ( w e. ~H /\ z e. ~H ) -> ( w +h z ) = ( z +h w ) ) | 
						
							| 16 | 13 14 15 | syl2an |  |-  ( ( w e. B /\ z e. A ) -> ( w +h z ) = ( z +h w ) ) | 
						
							| 17 | 16 | eqeq2d |  |-  ( ( w e. B /\ z e. A ) -> ( x = ( w +h z ) <-> x = ( z +h w ) ) ) | 
						
							| 18 | 17 | rexbidva |  |-  ( w e. B -> ( E. z e. A x = ( w +h z ) <-> E. z e. A x = ( z +h w ) ) ) | 
						
							| 19 | 18 | riotabiia |  |-  ( iota_ w e. B E. z e. A x = ( w +h z ) ) = ( iota_ w e. B E. z e. A x = ( z +h w ) ) | 
						
							| 20 | 12 19 | mpteq12i |  |-  ( x e. ( B +H A ) |-> ( iota_ w e. B E. z e. A x = ( w +h z ) ) ) = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) ) | 
						
							| 21 | 3 20 | eqtr4i |  |-  T = ( x e. ( B +H A ) |-> ( iota_ w e. B E. z e. A x = ( w +h z ) ) ) | 
						
							| 22 | 2 1 21 | cdj3lem2 |  |-  ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( D +h C ) ) = D ) | 
						
							| 23 | 11 22 | eqtr3d |  |-  ( ( D e. B /\ C e. A /\ ( B i^i A ) = 0H ) -> ( T ` ( C +h D ) ) = D ) | 
						
							| 24 | 5 23 | syl3an3b |  |-  ( ( D e. B /\ C e. A /\ ( A i^i B ) = 0H ) -> ( T ` ( C +h D ) ) = D ) | 
						
							| 25 | 24 | 3com12 |  |-  ( ( C e. A /\ D e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( C +h D ) ) = D ) |